Как рассчитать площадь сердечника трансформатора. Расчет трансформатора. Полезное для электрика

Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства. Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно.

Трансформатор - это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов :

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой . Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного - и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая - образуемая протеканием тока в первичной катушке, электромагнитная - образующая магнитный поток, и вторая электрическая - связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала . Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Виды сердечников

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

  • S - площадь сечения сердечника.
  • K - постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения - сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

Следует отметить, что если конструируется устройство с несколькими выводами во вторичной обмотке, то в четвёртом пункте все мощности суммируются, и их результат подставляется вместо P2.

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 - напряжение первичной обмотке, В.
  • S - площадь сердечника, см².
  • K1, K2 - число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d - диаметр провода, мм.
  • I - обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10-20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора - «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап - нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Да сих пор мы исходили из посыла, что первичная обмотка цела. А что делать, если она оказалась оборванной или сгоревшей дотла?

Оборванную обмотку можно размотать, восстановить обрыв и намотать заново. А вот сгоревшую обмотку придётся перемотать новым проводом. Конечно, самый простой способ, это при удалении первичной обмотки посчитать количество витков.

Если нет счётчика, а Вы, как и я, используете приспособление на основе ручной дрели, то можно вычислить величину редукции дрели и посчитать количество полных оборотов ручки дрели. До тех пот, пока мне не подвернулся на базаре счётчик оборотов, я так и делал.

Но, если обмотка сильно повреждена или её вообще нет, то рассчитать количество витков первичной обмотки трансформатора можно по приведённой формуле. Эта формула подходит для частоты сети равной 50 Герц.

  • ω – число витков на один вольт,
  • 44 – постоянный коэффициент,
  • T – величина индукции в Тесла,
  • S – сечение магнитопровода в квадратных сантиметрах.

Сечение моего магнитопровода – 6,25см².

Магнитопровод витой, броневой, поэтому я выбираю индукцию 1,5 Т.

44 / 1,5 * 6,25 = 4,693 вит./вольт

Определяем количество витков первичной обмотки с учётом максимального напряжения сети:

4,693 * 220 * 1,05 = 1084 вит.

Допустимые отклонение напряжения сети принятые в большинстве стран: -10… +5%. Отсюда и коэффициент 1,05.

Величину индукции можно определить по таблице

Не стоит использовать максимальное значение индукции, так как оно может сильно отличаться для магнитопроводов различного качества.

Видео: Расчет трансформатора питания. Простая электроника

Такая методика расчета трансформаторов конечно очень приблизительная но для радиолюбительской практики вполне подходит.
Кроме этого все нижеперечисленные расчеты актуальны только лишь для трансформаторов с Ш-образным сердечником и для работы с током промышленной частоты 50 Гц.

Итак, начнем....

Задача: нужен трансформатор с выходным напряжением 12V и током на вторичной обмотке не менее 1A. (если обмоток несколько то токи складываются).

Мощность вторичной обмотки получается 12V* 1A =12W.
Так как КПД у трансформаторов приблизительно 85%, то мощность забираемая первичкой при работе будет приблизительно в 1,2 раза выше и получится 12W * 1.2 = 14.4W.

Где S- площадь сердечника, P1- мощность первичной обмотки .
получится 4,93 кв.см. (ну в общем округлим до 5....)
Это необходимая минимальная площадь сердечника. Если есть возможность применить больше-это даже лучше.

Здесь:
W- количество витков,
Ктр- коэффициент трансформации,
Sс- площадь сечения сердечника .

Так как мы решили взять Ктр=50, то считаем:
W1= 50/5 * 220 = 2200
W2= 50/5 * 12 = 120

где I это ток протекающий через обмотку.
Ах, да.... мы же еще не знаем ток который будет потреблять первичка....
Ну, что же, это тоже не проблема: напряжение мы знаем, мощность тоже, получается:
I1= P1/U1 = 14.4/220 = 0.065A.

Итак:
диаметр провода для первички будет:
D1 = 0,7 * на корень из 0,065 = 0,18 мм.
Для вторичной обмотки:
D2 = 0.7 * на корень из 1 = 0,7 мм.

Вот и весь расчет!

Очень часто для питания радиолюбительских конструкций или для питания готовых устройств требуется понижающий трансформатор. Точный расчёт силового трансформатора очень сложен, но для приблизительного расчёта можно воспользоваться упрощёнными формулами. В этой статье рассмотрим как рассчитать трансформатор, собранный на наиболее часто встречающемся магнитопроводе из Ш-образных пластин.

Для расчёта трансформатора нам нужно знать: желаемое напряжение на вторичной обмотке и ток нагрузки. Ели ток нагрузки не известен, но известна его мощность, то вычислить ток не составит труда - нужно мощность поделить на напряжение на вторичной обмотке.

1. Расчёт тока вторичной обмотки

I2 = 1,5*Iн , где

  • I2 - ток во вторичной обмотке, А,
  • Iн - ток нагрузки, А.

2. Определение мощности, потребляемой от вторичной обмотки

P2 = U2*I2 , где

  • P2 - мощность вторичной обмотки, Вт,
  • U2 - напряжение вторичной обмотки, В,
  • I2 - ток вторичной обмотки, А.

Если необходимо несколько вторичных обмоток, то считаем мощность каждой обмотки, а затем складываем мощности всех вторичных обмоток и подставляем в следующую формулу.

3. Определение мощности трансформатора

Pт = 1,25*P2 , где

  • Рт - общая мощность трансформатора, Вт,
  • Р2 - мощность вторичной обмотки, Вт.

4. Расчёт тока первичной обмотки

I1 = Pт/U1 , где

  • I1 - ток в первичной обмотке трансформатора, А,
  • Pт - мощность трансформатора, Вт,
  • U1 - напряжение первичной обмотки, В.

5. Определение необходимого сечения сердечника магнитопровода

S = 1,3*, где

Следует заметить, что магнитопровод нужно подбирать так, чтобы отношение ширины сердечника (центральной пластины) магнитопровода к толщине набора было в пределах 1 ÷ 2.

6. Расчёт числа витков в первичной обмотке

W1 = 50*U1/S , где

  • W1 - число витков первичной обмотки, шт,
  • U1 - напряжение первичной обмотки, В,
  • ² .

7. Расчёт числа витков во вторичной обмотке

W2 = 55* U2/S , где

  • W2 - число витков вторичной обмотки, шт,
  • U1 - напряжение вторичной обмотки, В,
  • S - площадь сечения сердечника магнитопровода, см² .

8. Определение диаметров проводов обмоток трансформатора

d = 0,632* I , где

  • d - диаметр провода, мм,
  • I - ток обмотки, А (соответственно подставляем I1 и I2 для первичной и вторичной обмоток).

Расчёт приведён для медного провода.

9. Проверка заполняемости окон магнитопровода

После подбора пластин магнитопровода следует проверить влезет ли провод на каркас трансформатора.

Sо = 50*Pт , где

  • Sо - площадь, занимаемая намотанными проводами, в одном окне магнитопровода, мм 2 ,
  • Pт - мощность трансформатора, Вт.

Если площадь окна подобранного магнитопровода больше или равна вычисленной, то провод влезет.

Пластины магнитопровода нужно собирать вперекрышку, как это показано на рисунке вверху.

Магнитопровод следует стянуть обоймой или шпильками с гайками, шпильки необходимо обернуть бумагой или другим изоляционным материалом, чтобы шпильки не замыкали пластины. Если магнитопровод плохо стянут, то он будет гудеть.

Провода следует наматывать равномерно и плотно(иначе могут не влезть). Между каждым рядом надо прокладывать тонкую бумагу или лавсановую плёнку в 1-2 слоя и 3-4 слоя между обмотками.

Для удобства намотки можно сделать простое приспособление, показанное на рисунке:


Состоит устройство из двух фанерных стоек, закреплённых на общем основании и вставленного в них металлического прутка, с одного конца изогнутого в виде ручки. Одной рукой крутим ручку, второй направляем провод, катушку с проводом можно наподобие разместить ещё на одном прутке, но уже без ручки.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.
В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт .

Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 - 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного - подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт;

U _2 - напряжение на выходе трансформатора, нами задано 36 вольт;

I _2 - ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1 , мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:
S - площадь в квадратных сантиметрах,

P _1 - мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50/10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,

округляем до 173 витка.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера .

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где: d - диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .

Округлим до 1,0 мм².

Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм. и площадью по0,5 мм² .

Или два провода:
- первый диаметром 1,0 мм. и площадью сечения 0,79 мм² ,
- второй диаметром 0,5 мм. и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:
- «Как намотать трансформатор на Ш-образном сердечнике».
- «Как изготовить каркас для Ш - образного сердечника».

Электрический аппарат - трансформатор используется для преобразования поступающего переменного напряжения в другое - исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет ш-образного трансформатора

  1. Рассмотрим на примере процесс расчета обычного Ш-образного трансформатора. Предположим, даны параметры: сила тока нагрузки i2=0,5А, выходное напряжение (напряжение вторичной обмотки) U2=12В, напряжение в сети U1=220В.
  2. Первым показателем определяется мощность на выходе: P2=U2ˣi2=12ˣ0,5=6 (Вт). Это значит, что подобная мощность предусматривает использование магнитопровода сечением порядка 4 см² (S=4).
  3. Потом определяют количество витков, необходимых для одного вольта. Формула для данного вида трансформатора такая: К=50/S=50/4=12,5 (витков/вольт).
  4. Затем, определяют количество витков в первичной обмотке: W1=U1ˣK=220ˣ12,5=2750 (витков). А затем количество витков, расположенных во вторичной обмотке: W2=U2ˣK=12ˣ12,5=150.
  5. Силу тока, возникающую в первичной обмотке, рассчитайте так: i1=(1,1×P2)/U1=(1,1×6)/220=30мА.Это позволит рассчитать размер диаметра провода, заложенного в первичную обмотку и не оснащенного изоляцией. Известно, что максимальная сила тока для провода из меди равна 5-ти амперам на мм², из чего следует, что: d1=5А/(1/i1)=5A/(1/0,03А)=0,15 (мм).
  6. Последним действием будет расчет диаметра провода вторичной обмотки с использованием формулы d2=0,025ˣ√i2 , причем значение i2 используется в миллиамперах (мА): d2=0,025ˣ22,4=0,56 (мм).

Как рассчитать мощность трансформатора

  1. Напряжение, имеющееся на вторичной обмотке, и max ток нагрузки узнайте заранее. Затем умножьте коэффициент 1,5 на ток максимальной нагрузки (измеряемый в амперах). Так вы определите обмотку второго трансформатора (также в амперах).
  2. Определите мощность, которую расходует выпрямитель от вторичной обмотки рассчитываемого трансформатора: умножьте максимальный ток, проходящий через нее на напряжение вторичной обмотки.
  3. Подсчитайте мощность трансформатора посредством умножения максимальной мощности на вторичной обмотке на 1,25.

Если вам необходимо определить мощность трансформатора, который потребуется для конкретных целей, то нужно суммировать мощность установленных энергопотребляющих приборов с 20%-ми, для того, чтобы он имел запас. Например, если у вас имеется 10м светодиодной полосы, потребляющей 48 ватт, то вам необходимо к этому числу прибавить 20%. Получится 58 ватт – минимальная мощность трансформатора, который нужно будет установить.

Как рассчитать трансформатор тока

Основной характеризующей чертой трансформатора является коэффициент трансформации, который указывает, насколько изменятся основные параметры тока, вследствие его прохождения через это устройство.

Если коэффициент трансформации превышает 1, значит, трансформатор является понижающим, а если меньше этого показателя, то повышающим.

  1. Обычный трансформатор образован из двух катушек. Определитесь с количеством витков катушек N1 и N2, которые соединены магнитопроводом. Узнайте коэффициент трансформации k посредством деления количества витков первичной катушки N1, подключенной к источнику тока, на число витков катушки N2, к которой подключена нагрузка: k=N1/N2.
  2. Проведите измерение электродвижущей силы (ЭДС) на обоих трансфорсматорных обмотках ε1 и ε2, если отсутствует возможность узнать число витков в них. Сделать это можно так: к источнику тока подключите первичную обмотку. Получится так называемый холостой ход. Используя тестер, определите напряжение на каждой обмотке. Оно будет соответствовать ЭДС измеряемой обмотки. Не забывайте, что возникающие потери энергии из-за сопротивления обмоток настолько малы, что ими можно пренебречь. Коэффициент трансформации рассчитывается через отношение ЭДС первичной обмотки к ЭДС вторичной: k= ε1/ε2.
  3. Узнайте коэффициент трансформации находящегося в работе трансформатора, когда потребитель присоединен к вторичной обмотке. Определите его путем деления тока в первичной I1 обмотке, на возникший ток во вторичной I2 обмотке. Измерьте ток посредством последовательного присоединения тестера (переключенного в режим работы амперметра) к обмоткам: k=I1/I2.

Расчет сетевого трансформатора источника питания

В линейных источниках питания, ставших уже "классическими", основной элемент - сетевой трансформатор, обычно понижающий, который уменьшает сетевое напряжение до требуемого уровня. О том, как правильно его рассчитать (выбрать магнитопровод, рассчитать диаметр обмоточного провода, число витков в обмотках и т. д.), пойдет речь в предлагаемой статье.

Как выбрать магнитопровод

По конструктивному исполнению магнитопроводы для сетевых трансформаторов подразделяют на броневые, стержневые и тороидальные, а по технологии изготовления - на пластинчатые (рис. 1) и ленточные (рис. 2). На рис. 1 и 2 обозначены магнитопроводы: а) - броневые, б) - стержневые, в) - тороидальные.


В трансформаторах малой (до З00 Вт) и средней мощности (до 1000 Вт) чаще используют ленточные магнитопроводы. А среди ленточных наиболее применимы стержневые магнитопроводы. Они имеют ряд преимуществ по сравнению, например, с броневыми:

  1. Меньшая приблизительно на 25 % масса при одинаковой мощности трансформатора.
  2. Меньшая примерно на 30 % индуктивность рассеяния.
  3. Выше КПД.
  4. Меньшая чувствительность к внешним электромагнитным полям, поскольку ЭДС помех, наведенные в обмотках, которые расположены на разных стержнях, имеют противоположные знаки и взаимно компенсируются.
  5. Большая поверхность охлаждения обмоток.

Однако стержневым магнитопроводам присущи и недостатки:

  1. Все еще значительная индуктивность рассеяния.
  2. Необходимость изготовления двух катушек.
  3. Меньшая защищенность катушек от механического воздействия.

В тороидальных трансформаторах практически весь магнитный поток проходит по магнитопроводу, поэтому индуктивность рассеяния у них минимальная, однако сложность изготовления обмоток весьма высока.

На основании вышесказанного выбираем стержневой ленточный магнитопровод. Подобные магнитопроводы изготавливают следующих типов: ПЛ-стержневой ленточный; ПЛВ - стержневой ленточный наименьшей массы; ПЛМ - стержневой ленточный с уменьшенным расходом меди; ПЛР - стержневой ленточный наименьшей стоимости.

На рис. 3 показаны обозначения габаритных размеров магнитопровода: А - ширина; Н - высота; а - толщина стержня; b - ширина ленты; с - ширина окна; h - высота окна; h1 - высота ярма.

Стержневым магнитопроводам присвоено сокращенное обозначение, например, ПЛ8х 12,5x16, где ПЛ - П-образный ленточный, 8 - толщина стержня, 12,5 - ширина ленты, 16 - высота окна. Размеры магнитопроводов ПЛ и ПЛР приведены в табл. 1 и 2.



Варианты размещения катушек на магнитопроводе

Различные варианты расположения катушек на стержнях магнитопровода сравним по одному из основных параметров трансформаторов - индуктивности рассеяния, которую рассчитаем по формуле из

где μ0 = 4π·10-7 Гн/м - магнитная постоянная; w, - число витков первичной обмотки; вср.об - средняя длина витка обмоток, см; b - толщина обмоток, см; h - высота обмотки, см. Эта формула получена при условии, что обмотки - цилиндрические, не секционированы и расположены концентрически. Схемы соединения обмоток для всех вариантов показаны на рис. 4.


Сравнительные расчеты проведем для трансформатора на магнитопроводе ПЛx10x12,5x40, имеющего одну первичную и одну вторичную обмотки. Чтобы все расчетные варианты находились в одинаковых условиях, примем толщину обмоток b = с/4 и число витков первичной обмотки w1 = 1000.


Рассмотрим первый вариант, когда первичная и вторичная обмотки расположены на одном стержне (рис. 4, а). Чертеж катушки показан на рис. 5. Сначала рассчитаем среднюю длину витка обмоток

а затем индуктивность рассеяния катушки первого варианта

Во втором варианте первичная и вторичная обмотки разделены на две равные части, которые размещены на двух стержнях (рис. 4, б). Каждая катушка состоит из половины обмотки W1 и половины w2. Чертеж катушек показан на рис. 6. Вычислим индуктивность рассеяния одной катушки (W1 = 500), а затем результат удвоим, поскольку катушки одинаковы:

Две первичные обмотки в третьем варианте расположены в двух катушках на разных стержнях, каждая из которых содержит по 1000 витков. Обе первичные обмотки соединены параллельно. Вторичная обмотка также размещена в двух катушках на разных стержнях, причем возможны два случая: две полуобмотки с полным числом витков, соединенные параллельно (рис. 4, в), или вторичная обмотка разделена на две полуобмотки с вдвое меньшим числом витков, соединенные последовательно (рис. 4, г). Чертеж катушек показан на рис. 6. В этом варианте индуктивность рассеяния такая же, как и во втором варианте: LS3 = LS2 = 2,13 мГн.

Следует помнить, что во втором и третьем вариантах первичные и вторичные обмотки и полуобмотки должны быть включены согласно, чтобы создаваемые ими магнитные потоки в магнитопроводе имели одинаковое направление. Другими словами, магнитные потоки должны суммироваться, а не вычитаться. На рис. 7, а показано неправильное подключение, а на рис. 7, б - правильное.


Необходимость соблюдения правил соединения обмоток и полуобмоток - недостаток второго и третьего вариантов. Кроме того, в третьем варианте суммарный магнитный поток от первичной обмотки вдвое больше по сравнению с другими, что может привести к насыщению магнитопровода и, как следствие, к искажению синусоидальной формы напряжения. Поэтому применять третий вариант включения обмоток на практике следует осторожно.

В четвертом варианте первичная обмотка полностью расположена на одном стержне магнитопровода, а вторичная - на другом (рис. 4, д). Чертеж катушек показан на рис. 8. Поскольку обмотки расположены не концентрически, для расчета индуктивности рассеяния воспользуемся формулой из:

где b = с/4 - толщина обмоток, см; Rвн = воб/(2π) - внешний радиус обмотки, см; воб = 2а+2b+2πb - наружная длина витка обмотки, см. Вычислим наружную длину витка и внешний радиус обмотки: = 6,5 см; Rвн = 1,04 см. Подставляя рассчитанные значения в формулу для вычисления индуктивности рассеяния, получим LS4 = 88,2 мГн.

Кроме рассмотренных четырех существует еще много других вариантов расположения обмоток на стержнях магнитопровода, однако во всех остальных случаях индуктивность рассеяния больше, чем во втором и третьем вариантах.

Анализируя полученные результаты, можно сделать следующие выводы:

  1. Индуктивность рассеяния минимальна во втором и третьем вариантах расположения обмоток и находится в таком соотношении: LS4>>LS1>>LS2 = LS3.
  2. У трансформаторов третьего варианта две одинаковые первичные обмотки, поэтому они более тяжелые, трудоемкие и дорогие, чем во втором варианте.

Следовательно, при изготовлении трансформаторов малой мощности следует выбирать схему соединения и расположение обмоток, рассмотренные во втором варианте. Вторичные полуобмотки можно соединять и последовательно, если необходимо получить более высокое напряжение на выходе, и параллельно, если требуется больший выходной ток.

Краткие сведения о материалах магнитопроводов

До сих пор мы не учитывали потери в реальном трансформаторе, которые складываются из потерь в магнитопроводе - на вихревой ток и перемагничивание (гистерезис): в расчетах их учитывают как мощность потерь в стали Рст, и потери в обмотках - как мощность потерь в меди Рм. Итак, суммарная мощность потерь в трансформаторе равна:

P∑ = Рст + Рм = Рв.т + Рг + Рм,

где Рв.т - мощность потерь на вихревой ток; Рг - мощность потерь на гистерезис.

Для их уменьшения сталь подвергают термообработке - удаляют углерод, а также легируют - добавляют кремний, алюминий, медь и другие элементы. Все это повышает магнитную проницаемость, уменьшает коэрцитивную силу и, соответственно, потери на гистерезис. Кроме того, сталь подвергают холодной или горячей прокатке для получения необходимой структуры (текстуры проката).

В зависимости от содержания легирующих элементов, структурного состояния, магнитных свойств стали маркируют четырехзначными числами, например, 3412.

Первая цифра означает класс электротехнической стали по структурному состоянию и классу прокатки: 1 - горячекатаная изотропная; 2 - холоднокатаная изотропная; 3 - холоднокатаная анизотропная с ребровой текстурой.

Вторая цифра - процент содержания кремния: 0 - нелегированная сталь с суммарной массой легирующих элементов не более 0,5 %; 1 - легированная с суммарной массой свыше 0,5, но не более 0,8 %; 2 - 0,8...1,8 %; 3 - 1,8...2,8 %; 4 - 2,8...3,8 %; 5 - 3,8...4,8 %.

Третья цифра - группа по основной нормируемой характеристике (удельные потери и магнитная индукция): 0 - удельные потери при магнитной индукции 1,7 Тл на частоте 50 Гц (Pij/so); 1 - потери при магнитной индукции 1,5 Тл на частоте 50 Гц (P1,5/50); 2 - при индукции 1 Тл на частоте 400 Гц (Р1/400); 6 - индукция в слабых магнитных полях при напряженности 0,4 А/м (В0,4); 7 - индукция в средних магнитных полях при напряженности 10 А/м (В10) или 5 А/м (В5).

Первые три цифры обозначают тип электротехнической стали.

Четвертая цифра - порядковый номер типа стали.

Магнитопроводы трансформаторов для бытовой техники изготавливают из холоднокатаной текстурованной стали марок 3411-3415 с нормированными удельными потерями при магнитной индукции 1,5 Тл на частоте 50 Гц и удельным сопротивлением 60·10-8 Ом·м. Параметры некоторых марок электротехнической стали приведены в табл. 3.


Холоднокатаная электротехническая сталь обладает более высокими магнитными характеристиками. Кроме того, более гладкая поверхность позволяет увеличить коэффициент заполнения объема магнитопровода (ксТ) до 98 % .

Исходные данные для расчета трансформатора

Рассчитаем трансформатор, имеющий первичную и две одинаковые вторичные обмотки, со следующими параметрами: эффективное (действующее) напряжение первичной обмотки U1 = 220 В; эффективное (действующее) напряжение вторичных обмоток U2 = U3 = 24 В;

эффективный (действующий) ток вторичных обмоток l2 = I3 = 2А. Частота сетевого напряжения f = 50 Гц.

Коэффициент трансформации равен отношению напряжения на первичной к напряжению на разомкнутой (ЭДС) вторичной обмотке. При этом пренебрегают погрешностью, возникающей из-за отличия ЭДС от напряжения на первичной обмотке:

где w1 и w2 - число витков, соответственно, первичной и вторичной обмоток; Е1 и Е2 - ЭДС первичной и вторичной обмоток.

Ток в первичной обмотке равен:

Габаритная мощность трансформатора равна:

В процессе расчета необходимо определить размеры магнитопровода, число витков всех обмоток, диаметр и примерную длину обмоточного провода, мощность потерь, полную мощность трансформатора, КПД, максимальные габариты и массу.

Расчет магнитопровода трансформатора

Методика расчета размеров и других параметров взята, в основном, из.

Сначала рассчитаем произведение площади поперечного сечения стержня на площадь окна магнитопровода. Стержнем называют участок магнитопровода (axbxh), на котором размещена катушка:

где В - магнитная индукция, Тл; j - плотность тока в обмотках, А/мм2; η - КПД трансформатора, n - число стержней магнитопровода; кс - коэффициент заполнения сечения магнитопровода сталью; км - коэффициент заполнения окна магнитопровода медью.


Коэффициент заполнения сечения магнитопровода для сталей 3411-3415 равен 0,95...0,97, а для сталей 1511-1514 - 0,89...0,93.

Для расчета принимаем В = 1,35 Тл; j = 2,5 А/мм2; η = 0,95; Кc = 0,96; км = 0,31; n = 2:

Толщину стержня магнитопровода вычисляют по формуле

Подходящий магнитопровод выбирают по табл. 1 и 2. При выборе следует стремиться к тому, чтобы сечение магнитопровода было близко к квадрату, поскольку в этом случае расход обмоточного провода минимален.

Ширину ленты магнитопровода рассчитывают по формуле

Выбираем магнитопровод ПЛР18х25, у которого а - 1,8 см; b = 2,5 см; h = 7,1см;

Расчет обмоток трансформатора

Вычислим ЭДС одного витка по формуле

Рассчитаем приблизительно падение напряжения на обмотках:

Затем вычислим число витков первичной обмотки:

вторичных обмоток:

Рассчитаем диаметр обмоточного провода без изоляции по формуле

Подставив числовые значения, получим диаметр провода первичной:

и вторичных обмоток:

По табл. 5 выбираем марку и диаметр обмоточного провода в изоляции: для первичной обмотки - ПЭЛ или ПЭВ-1 di = 0,52 мм; для вторичных - ПЭЛ или ПЭВ-1 d2 = d3 = 1,07 мм.

Уточняем число витков обмоток. Для этого вначале уточним падение напряжения на обмотках:

Рассчитаем среднюю длину витка, используя рис. 5 или 6:

а затем и длину провода в обмотках:

Уточненные значения падения напряжения на обмотках равны:

С учетом полученных значений вычислим число витков первичной:

и вторичных обмоток:

Рассчитаем массу провода обмоток:

где m1 и m2 - погонная масса проводов, соответственно, первичной и вторичных обмоток из табл. 5.

Массу магнитопровода определяем по табл. 2: Мм = 713 г.

Масса трансформатора без учета массы деталей крепления равна М = = 288+2-165+713 = 1331 г. Максимальные размеры: (Ь+с)х(А+с)хН = 43x72x107 мм. Коэффициент трансформации k = W1/W2 = 1640/192 = 8,54.

Расчет мощности потерь

Потери в магнитопроводе равны:

где руд - удельные потери в магнитопроводе из табл. 3. Предположим, что магнитопровод изготовлен из стальной ленты 3413 толщиной 0,35 мм, тогда по табл. 3 находим, что удельные потери в таком магнитопроводе равны 1,3 Вт/кг. Соответственно, потери в магнитопроводе Рст = 0,713-1,3 = 0,93 Вт.

Потери в обмотке - на активном сопротивлении проводов - вычислим по формуле

где r1, r2 - активное сопротивление, соответственно, первичной и вторичных обмоток, I"1 - ток первичной обмотки с учетом потерь:

где r1м, r2м - погонное сопротивление проводов, соответственно, первичной и вторичных обмоток из табл. 5.

Пересчитаем ток вторичных обмоток в ток первичной обмотки:

Ток первичной обмотки с учетом потерь равен:

где η = 0,95 - КПД трансформатора из табл. 4 для мощности 100 Вт. Потери в обмотках равны:

Полная мощность трансформатора с учетом потерь равна:

КПД трансформатора рассчитаем по формуле

Изготовление трансформатора

Изготавливать трансформатор будем по второму варианту, рассмотренному выше. Расположение катушек показано на рис. 6. Для этого необходимо изготовить две катушки, каждая из которых содержит половину витков первинной и каждой из вторичных обмоток: w"1 = 820 витков провода ПЭЛ (или ПЭВ-1) диаметром 0,52 мм; w"2=w"3= 96 витков провода ПЭЛ (или ПЭВ-1) диаметром 1,07 мм.

Поскольку трансформатор имеет малые мощность и габариты, катушки можно изготовить бескаркасными. Толщина катушки b ≤ с/2 = 9 мм, ее высота hK ≤ 71 мм.

Число витков в слое первичной обмотки

число слоев

Число витков в слое вторичной обмотки

число слоев

Обмотки наматывают на деревянной оправке, изготовленной в точном соответствии с размерами участка магнитопровода, на котором будут расположены катушки (18x25x71 мм). К торцам оправки прикрепляют щечки.

Несмотря на то, что обмоточные провода покрыты эмалевой изоляцией и потому обладают высокой электрической прочностью, обычно между слоями обмотки прокладывают дополнительную, например, бумажную изоляцию. Чаще всего для изолирования обмоток от магнитопровода и между собой применяют трансформаторную бумагу толщиной 0,1 мм. Рассчитаем максимальное напряжение между двумя соседними слоями первичной обмотки

Поскольку напряжение между слоями небольшое, дополнительную изоляцию можно укладывать через слой или сделать ее более тонкой, например, использовать конденсаторную бумагу. Между первичной и вторичными следует поместить экранирующую обмотку - один незамкнутый виток тонкой медной фольги или один слой обмоточного провода, которая препятствует проникновению помех из сети во вторичные обмотки и наоборот.

Сначала оправку обматывают тремя слоями бумажной ленты (рис. 9), лепестки ленты приклеивают к щечкам. Затем наматывают первичную обмотку, прокладывая каждый слой изоляцией. Между первичной, экранирующей и вторичными обмотками прокладывают два слоя изоляции. Общая толщина изготовленных катушек не превышает 8 мм.

Проверка трансформатора

Собранный трансформатор сначала проверяют в режиме холостого хода - без нагрузки. При сетевом напряжении 220 В ток в первичной обмотке

напряжение на вторичных обмотках

Напряжение на вторичных обмотках можно точно измерить только вольтметром с высоким входным сопротивлением. Окончательно напряжение на вторичных обмотках трансформатора измеряют при номинальной нагрузке.

Литература

  1. Линде Д. П. и др. Справочник по радиоэлектронным устройствам. Под ред. А. А. Куликовского. Т. 2. - М.: Энергия, 1978.
  2. Горский А. Н. и др. Расчет электромагнитных элементов источников вторичного электропитания. - М.: Радио и связь, 1988.
  3. Сидоров И. Н. и др. Малогабаритные магнитопроводы и сердечники. Справочник. - М.: Радио и связь. 1989.
  4. Герасимов В. Г. и др. Электротехнический справочник. Т. 1. - М.: Энергия, 1980.
  5. Малинин Р. М. Справочник радиолюбителя-конструктора. - М.: Энергия, 1978

Смотрите другие статьи раздела.

Онлайн-калькулятор расчёта по размерам магнитопровода габаритной мощности трансформатора

Ни для кого не секрет, что радиолюбители частенько самостоятельно мотают трансформаторы под свои нужды. Ведь не всегда найдётся, например, готовый сетевой трансформатор. Более актуальным этот вопрос становится, когда нужен анодно-накальный или выходной трансформатор для лампового усилителя. Здесь остаётся лишь запастись проволокой и подобрать хорошие сердечники.

Достать нужный магнитопровод порой оказывается непросто и приходится выбирать из того, что есть. Для быстрого расчёта габаритной мощности был написан приведённый здесь онлайн калькулятор . По размерам сердечника можно быстро провести все необходимые расчёты, которые выполняются по приведённой ниже формуле, для двух типов: ПЛ и ШЛ.



Введите размеры магнитопровода сердечника трансформатора. При необходимости подкорректируйте остальные значения. Внизу Вы увидите рассчитанную габаритную мощность трансформатора, который можно сделать на таком сердечнике, по формуле:

Рассчитываются также площадь сечения магнитопровода и площадь окна.

В этих трансформаторах пластины имеют толщину 0,5мм, что не приветствуется в аудио. Но при желании - можно. При расчётах выходников следует исходить из параметров 0,5Тл на частоте 30Гц. При расчётах же силовиков на этом железе следует задавать не более 1,2Тл.

Можно ли использовать пластины от разных трансформаторов?

Если они одинаковые по размерам, то можно. Для этого следует смешать их.

Как правильно собирать магнитопровод?

Для однотактного выходника можно две крайние Ш-пластины поставить с противоположной стороны, как часто сделано в заводских ТВЗ. В промежуток через бумажку уложить I-пластины, на 2 штуки меньше. Взяв трансформатор так, чтобы I-пластины оказались снизу, с лёгким ударом поместить его на толстую ровную металлическую плиту. Это можно делать несколько раз, контролируя процесс измерителем индуктивности, чтобы получить одинаковую пару трансформаторов.

Как определить мощность трансформатора по магнитопроводу?

Для двухтактных усилителей нужно разделить габаритную мощность железа на 6-7. Для однотактных - на 10-12 для триода и на 20 для тетрода-пентода.

Как стягивать силовой трансформатор, нужно ли клеить магнитопровод?

Если хочется склеить, то применяем жидкий клей. Подаём на первичную обмотку постоянку 5-15 вольт, чтобы получить ток около 0,2А. При этом подковы стянутся без деформации. После этого можно надеть бандаж, аккуратно затянуть и оставить, пока клей не высохнет.

Как снять лак, которым покрыты трансформаторы бесперебойников?

Замочить на пару дней в ацетоне или проварить пару часов в воде. После этого лак должен сниматься. Механическое снимание лака недопустимо, т.к. появятся заусенцы и пластины будут коротить между собой.

Годятся ли эти трансформаторы куда-нибудь без разборки и перемотки?

Если на них есть дополнительная обмотка (около 30 вольт), то, соединив её последовательно с первичной, можно получить мощный накальный трансформатор. Но нужно смотреть ток холостого хода, т.к. эти трансформаторы не предназначены для длительной работы и часто намотаны не так, как нам бы хотелось.

a см
B см

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

Также потребуется учесть тип сердечника , потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе , связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике . Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора , потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

Понравилась статья? Поделитесь ей
Наверх