Как сделать солнечный коллектор своими руками. Используем солнечную энергию по назначению: как сделать коллектор своими руками. Плюсы и минусы гелиосистемы

Солнечные коллекторы - хороший способ сэкономить энергоресурсы.Солнечная энергия - бесплатная, так по крайней мере 6-7 месяцев в году можно получать теплую воду для хозяйственных нужд. А в остальные месяцы - еще и помогать системе отопления.

Солнечный коллектор можно изготовить самостоятельно. Для этого вам понадобятся материалы и инструменты, которые можно купить в большинстве строительных магазинов. Или то, что вы найдете в своем гараже.

Приведенная ниже технология использовалась в проекте "Включи солнце - живи комфортно". Она была разработана специально для проекта немецкой компанией Solar Partner Sued, которая профессионально занимается продажей, монтажом и сервисом солнечных коллекторов и фотоэлетрических панелей.

Главная идея - дешево и сердито. Для изготовления коллектора используются довольно простые и распространенные материалы, которые можно купить в ближайшем магазине, или даже найти у себя в гараже. При этом эффективность коллектора остается на приличном уровне. Она ниже, чем в фабричных моделей, но разница в цене полностью компенсирует этот недостаток.

Существуют различные типы солнечных водонагревателей, но все они основаны на простом принципе: черная поверхность поглощает солнечное тепло, потом это тепло передается воде. Простейшие модели могут быть построены из доступных материалов и не требуют насосов или иного электрооборудования. Эффективный солнечный коллектор может использоваться даже в зимнее время благодаря применению незамерзающих жидкостей - антифризов.

Описанная система солнечного коллектора является пассивной и не зависит от электроэнергии. Она обходится без насосов. Горячая жидкость перемещается между коллектором и баком по принципу конвекции, благодаря простому правилу - нагретая жидкость всегда поднимается вверх.

Принцип работы такого солнечного коллектора таков:

  1. Солнце нагревает жидкость в коллекторе
  2. Нагретая жидкость поднимается по коллектору и трубе в бак-аккумулятора
  3. Когда горячая жидкость поступает в теплообменник, установленный в бак с водой, тепло передается от теплообменника воде в баке
  4. Жидкость в теплообменнике, охлаждаясь, перемещается вниз по спирали и поступает из отверстия в нижней части бака обратно в коллектор
  5. Вода, нагретая в баке, аккумулируется в верхней части бака
  6. Холодная вода из водопроводной сети / резервуара поступает в нижнюю часть бака
  7. Нагретая вода отбирается через выходное отверстие в верхней части бака.

Пока на коллектор светит солнце, жидкость в трубах абсорберу нагревается, перемещается в бак и таким образом постоянно циркулирует. Этот процесс обеспечивает нагрев воды в баке всего за несколько часов при интенсивном солнечном излучении.

Основной элемент коллектора - абсорбер. Он состоит из металлического листа, который приварен к металлическим трубам. Несколько труб устанавливаются вертикально и привариваются к двум трубам большого диаметра, расположенных горизонтально. Эти толстые трубы для входа и выхода жидкости должны быть расположены параллельно друг другу. А входное отверстие для жидкости (нижняя часть абсорбера) и выходное отверстие (верхняя часть абсорбера) должны располагаться с разных сторон панели (диагонально). Для соединения более толстых трубах необходимо просверлить отверстия под диаметр вертикальных труб.

Для лучшей передачи тепла от металлической пластины к трубам очень важно обеспечить максимальный контакт пластины с трубами. Сварка должна быть вдоль всего элемента. Важно, чтобы металлический лист и трубы плотно прилегали друг к другу.

Абсорбер укладывается в деревянную раму и накрывается стеклом, которое защищает коллектор и создает внутри эффект теплицы.

Применяется обычное оконное стекло. Оптимальная толщина - 4 мм, при этом сохраняется хорошее соотношение надежности и веса. Желательно нужную площадь стекла разделять на несколько частей. Так удобнее и безопаснее работать с ним.

Использование нескольких слоев стекла или стеклопакета даст прирост эффективности, но увеличит вес конструкции и стоимость системы.

Солнечные лучи проходят через стекло и нагревают коллектор, а остекление предотвращает утечку тепла. Стекло также препятствует движению воздуха в абсорбере без него коллектор быстро терял бы тепло из-за ветра, дождя, снега или низкие внешние температуры в целом.

Раму следует обработать антисептиком и краской для наружных работ.

В корпусе делаются сквозные отверстия для подачи холодной и отвода нагретой жидкости из коллектора.

Сам абсорбер красят жаростойким покрытием. Обычные черные краски при высоких температурах начинают шелушиться или испаряться, что приводит к потемнению стекла. Краска должна полностью высохнуть, прежде чем вы закрепите стеклянное покрытие (для предотвращения конденсации).

Под абсорбером закладывается утеплитель. Чаще всего используется минеральную вату. Главное, чтобы он выдерживал довольно высокие температуры в течение лета (иногда более 200 градусов).

Снизу раму закрывают ОСБ плитой, фанерой, досками и т.п. Основное требование к этому этапу - убедиться, что низ коллектора надежно защищен от попадания влаги внутрь.

Для закрепления стекла в раме делают пазы, или крепят планки по внутренней стороне рамы. При расчете размеров рамы следует учитывать, что при изменении погоды (температуры, влажности) в течение года ее конфигурация будет немного меняться. Поэтому на каждой стороне рамы оставляют несколько миллиметров запаса.

На паз или планку крепится резиновый оконный уплотнитель (D- или Е-образный). На него кладется стекло, на которое таким же образом наносится уплотнитель. Сверху это все закрепляется оцинкованной жестью. Таким образом, стекло надежно закреплено в раме, уплотнитель защищает абсорбер от холода и влаги, а именно стекло не повредится, когда деревянная рама будет "дышать".

Стыки между листами стекла изолируются уплотнителем или силиконом.

Накопительный бак. Здесь хранится нагретая коллектором вода, поэтому стоит позаботиться о его термоизоляции.

В качестве бака можно использовать:

  • неработающие электрические бойлеры
  • кислородные баллоны
  • бочки для пищевого использования

Главное - помнить, что в герметичном баке будет создаваться давление в зависимости от давления водопроводной системы, к которой он будет подключен. Не каждая емкость способна выдерживать давление в несколько атмосфер.

В баке делают отверстия для входа и выхода теплообменника, ввода холодной воды, и забора нагретой.

В баке размещается спиральный теплообменник. Для него используют медь, нержавеющую сталь, или пластик. Нагретая через теплообменник вода будет подниматься вверх, поэтому его следует поместить в нижней части бака.

Коллектор соединяется с баком с помощью труб (например металлопластиковых или пластиковых), проведенные от коллектора к баку через теплообменник и обратно в коллектор. Здесь очень важно предотвратить утечку тепла: путь от баке до потребителя должен быть максимально коротким, и трубы должны быть очень хорошо изолированными.

Расширительный бачок - это очень важный элемент системы. Он представляет собой открытый резервуар, расположенный в крайней верхней точке контура циркуляции жидкости. Для расширительного бачка можно использовать как металлическую, так и пластиковую посуду. С ее помощью контролируется давление в коллекторе (из-за того, что жидкость от нагрева расширяется, могут треснуть трубы). Для снижения потерь тепла бачок также необходимо изолировать. Если в системе присутствует воздух, то оно также может выходить через бачок. Через расширительный бачок происходит также наполнения коллектора жидкостью.

Более особенностей строения, необходимые материалы и правила установления солнечного коллектора можно узнать, загрузив практическое пособие на веб-сайте проекта. опубликовано

Сегодня вакуумные солнечные коллекторы можно встретить преимущественно в отоплении и горячем водоснабжении. Такие приборы по принципу работы напоминают обычные панельные конструкции – у тех и других изолированный корпус, сверху накрытый стеклом.

Основным отличием можно считать способ преобразования солнечной энергии – этот процесс происходит в стеклянных трубах с созданным внутри вакуумом. Собственно, именно поэтому такую конструкцию называют вакуумной. В каждой трубке имеется тепловой канал, выполненный в виде медного патрубка, наполненного теплоносителем. Для соединения трубок используются отдельные стыковочные элементы.

Именно эти особенности конструкции и предопределяют основные преимущества вакуумных коллекторов. Да, такие системы очень сложные, за ними нужен особый уход, а ввиду высокой стоимости многим такие коллекторы попросту не по карману. Но высокая производительнос ть с лихвой окупает все эти недостатки – панельные коллекторы, как известно, способны работать лишь в летнее время, а вакуумные используются даже зимой.

Основное достоинство таких систем – практически полное отсутствие теплопотерь , ведь что может быть лучшим изолятором, чем вакуум?

К другим преимуществам можно отнести следующее:

  • простоту ремонта – каждый поврежденный узел можно с легкостью заменить;
  • эффективность работы даже при минус 30°С;
  • надежность – гелиосистема продолжит свою работу даже после того, как одна из трубок выйдет из строя;
  • способность генерировать температуру более 300°С;
  • возможность работы даже в облачную погоду и полное поглощение солнечной энергии , в том числе невидимых спектров;
  • незначительную парусность коллектора.

Конструкцию гелиосистемы можно устанавливать под углом, не превышающим 20°. Более того, ее поверхность следует периодически очищать от грязи и снега.

В конструкции коллекторов используются два типа стеклянных трубок:

  • коаксиальные;
  • перьевые.

Ознакомимся подробнее с каждым из них.

Трубка коаксиальная

Это своего рода термос, который состоит из двойной колбы. Наружная колба покрывается специальным веществом, поглощающим тепло. Между двумя трубками создается вакуум. Это позволило добиться того, что тепло при работе передается непосредственно от стеклянных колб.

Обратите внимание! В вакуумных коллекторах используется специальное стекло, изготовленное из боросиликатов. Такой материал пропускает большее количество солнечной энергии.

Внутри каждой трубки находится еще одна – медная (ее заполняют эфирной жидкостью). При повышении температуры эта жидкость испаряется, передает накопленное тепло и стекает обратно в виде конденсата. Далее цикл повторяется снова и снова.

Трубка перьевая

Такого рода трубки состоят из одностенной колбы. К слову, по толщине стенок они существенно превышают коаксиальные аналоги. Медная трубка усиливается специальной гофрированной пластиной, обработанной влагопоглощающим веществом. Выходит, что воздух в данном случае выкачивается из всего теплового канала.

Такие каналы, к слову, тоже бывают разными:

  • прямоточными;
  • «Хит пайп».

Каналы типа «Хит пайп»

Другое их название – тепловые трубы. Они работают следующим образом: эфирная жидкость в закрытых трубах при повышении температуры поднимается вверх по каналу, после чего конденсируется там в специально оборудованном теплосборнике. В последнем жидкость передает тепловую энергию и опускается вниз по трубке. Из теплосборника тепло передается дальше в систему при помощи циркулирующего теплоносителя.

Коаксиальная вакуумная трубка heat-pipe с 2-трубным manifold’ом

Характерно, что металлические трубки здесь могут быть не только медными, но и алюминиевыми .

Прямоточные каналы

В каждом из таких каналов в стеклянной трубке находятся сразу два металлических патрубка. По одному из них жидкость попадает в колбу, нагревается там и выходит по второму.

Сооружаем вакуумный солнечный коллектор своими руками

В принципе, вакуумную гелиостанцию можно сделать и своими руками, но это крайне сложная и ответственная работа, ведь вам нужно не только создать вакуум в каждой из трубок, но и грамотно впаять абсорбер. Для всего этого требуется и специализированн ое оборудование, и соответствующие знания. Более того, во время монтажа следует соблюдать целый ряд условий.

  1. Выбор правильного места установки (обязательно с юга), устранение всего, что может создавать тень.
  2. Обеспечение движения теплоносителя исключительно снизу вверх.
  3. Предотвращение перегрева коллектора – это выведет из строя всю систему.

Словом, вакуумная гелиостанция – это крайне сложная система , которую лучше приобретать уже в готовом виде. Действительно, можно ли создать самодельную модель такого устройства, если заводов, выпускающих такого рода продукцию, в мире не более двух десятков? Именно по этой причине в нашем случае можно говорить лишь о самостоятельной сборке конструкции из заводских колб.

Но и тут есть проблема. Для правильной установки нужно иметь слесарские навыки, чтобы не нарушить герметичность труб. Поэтому намного проще купить готовое, пусть и дорогое изделие, чем собрать самому и каждый раз, включая его, опасаться поломок.

Как собрать воздушный коллектор

Если же вы решились провести сборку гелиосистемы своими руками, для начала позаботьтесь обо всех необходимых инструментах.

Что потребуется в работе

1. Отвертка.

2. Разводной, трубный и торцевой ключи.

Технология сборки

Для сборки желательно обзавестись хотя бы одним помощником. Сам процесс можно разбить на несколько этапов.

Первый этап . Сначала соберите раму, желательно сразу в том месте, где она будет установлена. Оптимальный вариант – крыша, туда можно по отдельности передать все детали конструкции. Сама процедура монтажа рамы зависит от конкретной модели и прописывается в инструкции.

Второй этап. Прочно закрепите раму на крыше. Если крыша шиферная, то используйте брус обрешетки и толстые шурупы, если бетонная – то обычные анкера.

Обычно рамы рассчитаны на монтаж на ровные поверхности (максимум – под 20-градусным наклоном). Герметизируйте места крепления рамы к поверхности крыши, иначе они будут протекать.

Третий этап. Пожалуй, самый сложный, ведь вам предстоит поднять на крышу тяжелый и габаритный накопительный бак. Если нет возможности использовать спецтехнику, укутайте бак в плотную ткань (во избежание возможных повреждений) и поднимите его на тросе. Затем прикрепите бак к раме с помощью шурупов.

Четвертый этап . Далее вам предстоит смонтировать вспомогательные узлы. Сюда можно отнести:

  • ТЭН;
  • температурный датчик;
  • автоматизированн ый воздуховод.

Каждую из деталей установите на специальную смягчающую прокладку (такие тоже идут в комплекте).

Обратите внимание! Температурный датчик закрепляется с помощью торцевого ключа!

Пятый этап . Подведите водопровод. Для этого можете использовать трубы из любого материала, главное, чтобы он выдерживал температуру в 95°С тепла. Кроме того, трубы должны быть устойчивыми к низким температурам. С этой точки зрения больше всего подходит полипропилен.

Шестой этап . После подключения водопровода заполните накопительный бак водой и проверьте на герметичность. Посмотрите, не протекает ли трубопровод – оставьте на несколько часов наполненный бак, после чего внимательно все осмотрите и, в случае необходимости, устраните неисправность.

Седьмой этап . Убедившись, что герметичность всех соединений в норме, приступите к установке нагревательных элементов. Для этого оберните медную трубку листом алюминия и поместите в стеклянную вакуумную трубку. На нижнюю часть стеклянной колбы наденьте чашку-фиксатор и резиновый пыльник. Медный наконечник на другом конце трубки вставьте до упора в латунный конденсатор.

Обратите внимание! На стеклянных трубках вы заметите вязкое вещество. Не удаляйте его ни в коем случае – это термоконтактная смазка.

Осталось лишь защелкнуть чашку-фиксатор на кронштейне. Аналогичным образом установите остальные трубки.

Восьмой этап . Установите на конструкции монтажный блок и подведите к нему питание в 220 вольт. Затем подсоедините к этому блоку три вспомогательных узла (их вы установили на четвертом этапе работы). Несмотря на то, что монтажный блок влагозащищен, постарайтесь накрыть его козырьком или какой-либо другой защитой от атмосферных осадков. Затем подсоедините к блоку контроллер – он позволит мониторить и регулировать работу системы. Установите контроллер в любом удобном месте.

На этом монтаж вакуумного коллектора закончен. Внесите все необходимые параметры в контроллер и запустите систему.

И последний (но не по значимости) важный совет: не забывайте о регулярном обслуживании установки – это не только повысит эффективность ее работы, но и продлит срок эксплуатации .

Видео – Вакуумный солнечный коллектор

Итак, на повестке дня стоит вопрос: как собрать и изготовить солнечный коллектор своими руками. Раз вопрос стоит — надо его решить и желательно положительно. В данном руководстве описывается процесс создания солнечного коллектора своими руками, который способен обеспечить дачника полноценным горячим душем. Сердце коллектора — медный змеевик, в котором циркулирует вода. Нагреваясь, вода поступает в верхнюю часть бака, а холодная (остывшая) вода из нижней части бака возвращается в коллектор для дополнительного нагрева. Таким образом происходит естественная циркуляция без использования насоса. Для того, чтобы увеличить площадь нагревания коллектора, к змеевику прикрепляются специальные пластины, которые поглощают все тепло с поверхности коллектора и передают его теплообменнику. А герметизация и утепление короба не позволят ему растерять полученное тепло.

Этап первый: «Изготовление змеевика своими руками»

Для создания змеевика своими руками нам потребуется 16 метров мягкой медной трубы d10 мм. Она обычно продается в бухтах. Такую трубку удобно гнуть, поэтому используем именно ее. Схематично змеевик будет выглядеть вот так:

Для фиксации змеевик прикрепляется к основе из фанеры толщиной 5 мм размером 800 на 1800 мм. Поэтому первым делом выпиливаем соответствующий лист фанеры. Все секции змеевика должны устанавливаться под небольшим углом (около 5°). Если уложить трубу строго горизонтально, то система работать не будет. (без насоса) На фанеру мы должны прикрепить специальные шаблоны. С их помощью гораздо удобнее укладывать змеевик. Кроме того они будут поддерживать и фиксировать конструкцию. Шаблоны изготавливаем из той же фанеры толщиной 5 мм:

Нам нужно изготовить по 14 шаблонов №1 и №2. Шаблоны нужно прикрепить на основу согласно схемы:

Установку шаблонов начинаем с нижнего левого угла. Сначала с шагом в 100 мм устанавливаются шаблоны №2. (расстояние от края 50мм)

Затем между ними устанавливаются шаблоны № 1 под углом в 5 градусов относительно центра коллектора. Шаблоны прикрепляем гвоздями либо саморезами 7-9 мм. (не менее 2-х на каждый шаблон) Начинаем укладку медной трубы. Прикладываем трубу к фанере. Оставляем конец на 10 см выходящий за границы фанеры. Прижимаем трубку к шаблону и фиксируем скобой. Тянем трубку до следующего шаблона, расположенного на другом боку. Следим, чтобы трубка располагалась ровно под углом 5° без «задиров» и «провисов». Фиксируем в нескольких местах. Дойдя то поворота, укладываем трубку между шаблонами и фиксируем ее. Так постепенно поворот за поворотом. После того, как змеевик собран, проверьте прочность фиксации к основе, а самое главное угол наклона каждой секции. Помните, что на прямых участках не должно быть обвисания, иначе система работать не будет.

Этап второй. «Изготовление пластин своими руками»

Для изготовления пластин своими руками нам понадобится алюминиевый лист толщиной 0,4-0,5 мм Вырезаем его согласно чертежу:

Если у Вас имеются небольшие куски, то ничего страшного. Вместо одной пластины длиной 440 мм, можно изготовить две по 220 мм, или три по 146 мм. Пластина должна плотно прилегать к основе и «обнимать» трубку максимально плотно. После того, как вырезана форма, нужно придать области обозначенной пунктиром, форму трубки. Для этого изготавливаем деревянный шаблон вот по этой схеме:

После того, как форма создана, при помощи молотка вбиваем стальной брусок в углубление формы:

Необходимо изготовить 15 таких пластин. После того, как пластины изготовлены, надо прикрепить их на фанеру, поверх змеевика. Перед тем, как установить пластину на трубку, смазываем ее теплопроводной пастой для лучшего эффекта. Затем прижимаем к трубе и фиксируем мебельным степлером:

Для достижения еще большей производительности под трубкой можно уложить алюминиевый лист длиной 440 мм шириной 40-50 мм. Это нужно сделать до установки змеевика, на области между шаблонами:

После того, как все пластины уложены, красим их термостойкой черной матовой краской. Идеальным вариантом было бы пройтись перед покраской пескоструйным аппаратом, для того чтобы поверхность пластин стала шершавой и лучше принимала солнечный свет.

Этап третий: «Солнечный коллектор своими руками — сборка»

Чтобы собрать солнечный коллектор, нам понадобится рама. Изготавливается она по размерам основы для змеевика:

Для еѐ изготовления используем брус 20х70 мм. (два отрезка длиной 1840 мм и два длиной 800 мм). Скрепляем их. Теперь из влагостойкой фанеры вырезаем кусок 1840мм на 840 мм и прикрепляем его к раме. У нас получился короб. Далее устанавливаем дополнительную раму из бруса 20х20мм. Она нужна для того, чтобы закрепить на неѐ — основу с змеевиком. На схеме брус 20х70 обозначен оранжевым цветом, а 20х20 синим:

Теперь необходимо собрать воедино всё. Укладываем утеплитель на дно короба. Его размер 760 мм на 1760 мм. Толщина утеплителя должна равняться высоте бруса 20х20, т.е 20 мм. После утеплителя укладываем вспененный полиэтилен размером 800 на 1800 мм. А после него укладываем основу с змеевиком. В разрезе вся конструкция выглядит так:

При помощи саморезов 15 мм прикрепляем основу к коробу, а вернее к брусу 20х20. Теперь займемся утеплением боковых стенок. Для этого используем утеплитель толщиной 10 мм и высотой 40 мм. Его надо укрепить скобами по всему периметру. Следующий этап – остекление. Нам понадобится стекло 1840 на 840
мм. Перед его установкой проходим по периметру короба слоем силикона. Затем устанавливаем само стекло. Еще раз дополнительно проходим силиконом места соединения стекла и короба. Крепить стекло будем при помощи алюминиевого уголка любого из 4х размеров: 20х30 , 20х40, 30х30 или 30х40 Всего потребуется 5300 мм уголка.

Этап четвертый: «Солнечный коллектор своими руками — подключение »

Для максимального эффекта солнечный коллектор должен быть установлен под углом 90° к углу падения солнечных лучей. Угол наклона лучей солнца зависит от широты местности, где установлен коллектор. Кроме того, этот угол меняется в течении всего года. Наиболее оптимальный вариант изготовить специальную подставку, где можно регулировать угол наклона солнечного коллектора. Достаточно раз в месяц изменять этот угол для получения оптимального результата. Схему подобной опоры Вы можете видеть ниже:

Но очень часто возникает такая ситуация, что невозможно менять угол наклона каждый месяц. Это бывает если коллектор установлен на крыше. В этом случае необходимо определить оптимальный угол для всего сезона эксплуатации и при монтаже сразу установить коллектор на этот угол. При эксплуатации коллектора в летний период рекомендуется устанавливать его на 15-25° меньше широты местности. Например, Москва расположена на широте 55,75°. Это значит, что оптимальный угол наклона будет от 30° до 40°. Данный коллектор нужно подключить к ѐмкости объемом 30 литров. Емкость должна располагаться выше самой верхней точки коллектора. Но это расстояние не должно превышать 1 метра, но не менее 30-40 см Соединения между коллектором и бачком можно осуществить при помощи полипропиленовых труб d20 мм. Для этого к медной трубке надо припаять переходник, а уже к нему присоединить трубу. При этом старайтесь избегать отводов, а переходы осуществлять при помощи полуотводов (не более 2-х на прямой и обратный переход). Выход из верхней части коллектора должен соединяться с верхней частью бачка, а выход из нижней части бочка должен быть соединен с входом в нижней части коллектора.

Также к емкости нужно подвести холодную воду. Можно в бачке установить обычную сифонную систему унитаза, установив поплавок на 30 литров. Но при этом с каждой секундой приема душа, вода будет охлаждаться, поэтому самый простой и эффективный способ, это ручной краник. Таким образом, Вы расходуете все 30 литров горячей воды, а уже потом заполняете бак снова. Если хотите получить быстро небольшое количество горячей воды, то заполните бак не полностью. Обращаю Ваше внимание, что 30 литров это достаточное количество для ясной погоды в условиях Московской области. Если погода пасмурная, либо температура воздуха ниже 8 С, то не заполняйте бак полностью. Если облачность сильная и солнце не проглядывается залейте в бак только 20 литров воды. А если облачность сопровождается низкой температурой воздуха – то 15 литров. Эти правила работают в условиях Московской области и центральной части России. Для Ленинградской области максимальный объѐм бака — 25 литров, а для Кубани – 35 литров. Не забываем, что накопительный бачек также должен быть утеплен.

С каждым годом все более актуальной становиться проблема обеспечения своего загородного дома или дачи горячей водой. Особенно часто над этой проблемой размышляют хозяева коттеджей, в которых они проживают постоянно. Ведь затраты на отопление и горячее водоснабжение занимают весомую долю в финансировании жизнеобеспечения жилища. И поиск возможностей сократить затраты на содержание дома – это нормальное и естественное желание любого человека. Разумеется, самый реальный вариант снизить затраты в части отопления дома, изучить и начать изготовление своими руками устройства из области альтернативной энергетики.

О том что селективное устройство возобновляемой энергетики, примененное для отопления дома, имеет множество неоспоримых преимуществ известно давно, и о нем знает практически каждый взрослый человек. Однако на практике не каждый из этих взрослых людей, имеющих желание стать более автономными в вопросах осуществления нагрева воды, решается выложить приличную сумму денег, чтобы приобрести селективное устройство для отопления дома фабричного изготовления. Конечно, из любой ситуации можно найти выход, а из этой тем более. Солнечный коллектор для отопления дома можно сделать своими руками. Вы без проблем самостоятельно соберете плоский, воздушный солнечный коллектор. Такие самодельные устройства для нагрева воды с помощью солнечной энергии можно сделать из пивных банок и пластиковых бутылок, соединяя их при помощи шланга, подводя вакуумные трубки. В результате вы получите абсорбер солнечной энергии для отопления дома путем нагрева воды, изготовление которого не потребует от вас практически никаких финансовых вложений (особенно при выборе варианта из жестяных банок).


Какие материалы потребуются вам, чтобы изготовить самодельный абсорбер

Обычному обывателю кажется, что самостоятельно изготовить абсорбер на солнечной энергии для отопления своего дома, проведя собственноручное изготовление каждой детали, составляющей устройство, невероятно сложная задача. Однако, для того чтобы сделать подобный абсорбер, который будет выступать как устройство для нагрева воды в системе отопления дома, не нужно приобретение или поиск каких-то экзотических материалов. Вам не придется объездить уйму магазинов в поисках нужного шланга, разыскивая вакуумные трубки. Не переживайте – это все домыслы лентяев и людей, боящихся взяться за дело. Главное, взвешенно подойти к решению проблемы, правильно все спланировать, нарисовать схему и подобрать необходимые материалы.


Самодельный плоский воздушный абсорбер с нанесенным селективным покрытием можно изготовить из обычных материалов и компонентов ПНД. Вакуумные трубы из поликарбоната и другие детали можно приобрести по небольшим ценам в любом хозяйственном магазине или супермаркете. Схема для сборки довольно простая, в целях обучения можно просмотреть видео во всемирной сети (таких видео там более чем достаточно). На самом деле в глобальной сети можно найти много специализированной литературы по данной проблеме. Если вы решили сделать задуманную работу на качественно высоком уровне, прочтение определенного количества литературы не станет лишним.

Основная трудность в процессе сборки состоит в том, как именно сделать змеевик (это трубка в извилистой форме, по которой циркулирует жидкость, осуществляя накопление энергии). Здесь есть несколько вариантов исходя из которых, будет составлена схема сборки. Самый простой вариант собрать абсорбер на основе готового змеевика (можно попробовать поискать что ни будь, подходящее для этих целей, важно, чтобы он был вакуумный). Как вариант, может подойти система циркуляции, расположенная на задней стенке холодильника. Второй вариант – это подобрать нужные вакуумные трубки, два-три шланга, пару пластиковых бутылок воды (из них собирается теплоноситель). Для большей уверенности еще раз просмотрите обучающее видео. Трубки для нагрева воды лучше использовать медные. Далее вам потребуется заняться пайкой непосредственно змеевика.


Второй очень значимый элемент, который входит в абсорбер – это верхняя сторона из прозрачного поликарбоната. В условиях промышленного производства покрытие из поликарбоната не используется, лицевое покрытие отливают из закаленного стеклянного сплава. Однако в нашем случае рассматривается самодельный воздушный коллектор, тепловая схема и требуемая эффективность которого допускает использование поликарбоната, так как собирать устройство мы будем из подручных недорогих материалов. Стоит отметить, что существуют схемы сборки где применяют материалы начиная от пивных банок, и заканчивая применением пластиковых бутылок.


Подготовка к сборке абсорбера

Итак, в сборке своего устройства вам лучше прибегнуть к использованию сотового прозрачного поликарбоната. Применение такого вида поликарбоната позволит добиться максимальной эффективности нагрева от создаваемого устройства. Сделать выбор в пользу этого поликарбоната стоит еще и потому, что он очень прочный. Это немаловажно, учитывая возможные погодные катаклизмы, такие как крупный град, ураганный воздушный поток, который срывает ветки с деревьев – эти случайности надо учитывать, так как они способны повредить слабое покрытие. Сотовая структура покрытия поможет вам сделать воздушный эффект парника, в результате создавая усиленный момент нагрева воды в трубках. Проще говоря, применив этот материал и в дополнение к нему селективное покрытие, вы значительно повысите эффективность изделия.


Для абсорбирующей панели вам будет нужен лист металла толщиной около 0,8 миллиметров (однако, лучше подойдет медный материал). В принципе сойдет и стальной лист. На внешнюю поверхность надо будет нанести так называемое селективное покрытие (выкрасить матовой черной краской, краска должна быть стойкой к высоким температурам). Если не соблюдать эти рекомендации (черное покрытие тоже имеется в виду), устройство не будет функционировать в правильном режиме.

В дополнение к перечисленным компонентам приобретите необходимую для теплоизоляции минеральную вату, она создаст своеобразный воздушный капкан, максимально снижая теплообмен с окружающим пространством, передавая все тепло в змеевик, а далее посредством шланга, в систему отопления дома.


Корпус устройства вы тоже сможете собрать самостоятельно, для этого вам надо использовать алюминиевые материалы или использовать менее долговечный, но легче поддающийся обработке деревянный материал. Работая с деревом, вы потратите значительно меньше времени на создание обогревателя, а с фанерой работать еще легче. Но все-таки лучше использовать раму из алюминия, ее долговечность, в сравнении с деревом, не идет ни в какое сравнение.

Определяемся с размерами коллектора

Теперь подведем итог, перечислим все необходимые для сборки эффективного самодельного коллектора материалы:

  • Трубки из меди размерами 18 миллиметров – из них вы будете формировать змеевик (такие же трубки используют при сборке отопительных систем);
  • черная матовая краска, стойкая к высоким температурам (при ее помощи вы нанесете селективное покрытие);
  • минеральная вата (теплоизоляция);
  • лист металла (медь, железо, сталь), толщина листа 0,8 миллиметров в толщину;
  • угловые переходы 18 х 18 миллиметров;
  • сантехнические переходы 18 мм х ¾ (нужны для того чтобы подключить к системе водоснабжения);
  • сотовый поликарбонат (лицевое покрытие коллектора);
  • лист алюминия и алюминиевые уголки для создания корпуса изделия, в случае отсутствия таковых – деревянные планки и лист фанеры для задней стены нагревателя;
  • все необходимые для проведения паяльных работ инструменты.


Важно заранее определиться с габаритами вашего коллектора исходя из его размеров, заранее рассчитайте требуемое количество трубок, переходов и других материалов (проще говоря, общую производительность монтируемого устройства). Вычислите количество воды, которое потребуется для обеспечения теплового обмена во всей системе. Чтобы это сделать определитесь заранее, в каких целях будет использоваться коллектор – либо это только помывка посуды, либо для душа, либо для обеспечения покрытия всех хозяйственных нужд горячего водоснабжения в вашем доме. Для подогрева воды в целях помывки посуды или принятия душа будет достаточно собрать коллектор размерами 200 х 100 сантиметров, расстояние между трубками в змеевике должно составить от 8 до 10 сантиметров.

Процесс сборки самодельного солнечного коллектора

Начало сборки этого изделия солнечной энергетики стартует с изготовления змеевика. Если вам удалось подобрать готовый змеевик, окончательная сборка займет намного меньше времени. Подобранный змеевик стоит очень тщательно вымыть под струей воды (желательно горячей), чтобы изнутри вымыть все засоры и избавиться от остатков фреона. Если у вас не нашлось подходящих трубок, то нужное количество вы сможете приобрести в магазине. Но в этом случае придется изготовить сам змеевик. Для его изготовления нарежьте трубки на требуемую длину. Далее, используя угловые переходы, проведите их спайку в форме конструкции змеевика. Дальше, чтобы коллектор можно было подключить к системе водоснабжения, на края змеевика напаивайте сантехнические переходы размерами ¾. Существует несколько вариантов формы и конструкции змеевика, например, можно паять трубки в форме «лесенки» (если вы собрались реализовать такой вариант, тогда покупайте не угловые переходы, вам понадобятся тройники).


Потом на заранее подготовленный лист металла вы наносите селективное покрытие черной матовой краской, сделать это желательно не меньше чем в пару слоев. Дождитесь, пока воздушный поток высушит краску, и начинайте пайку змеевика (с неокрашенной стороны). Вся конструкция змеевика должна быть припаяна по всей длине трубок, сделав это, вы гарантируете максимально эффективный теплообмен и как следствие – максимальную передачу тепла в систему водоснабжения. Если сделаете все правильно, собранный вами солнечный коллектор заработает так, как и было задумано.

Ответственная стадия сборки

Заключительным этапом вам надо собрать корпус, который скрепит все компоненты устройства в единую конструкцию. Используя лист фанеры и деревянные бруски, нужно сбить прочный ящик. В используемых деревянных брусках заранее прорежьте пазы, в них вы потом вставите экран из поликарбоната (глубина паза около 0,5 см). Выходные отверстия для трубок можно сделать уже после того, как установите все основные компоненты. Далее, в уже собранный деревянный ящик, чтобы создать воздушный карман, вы укладываете изоляцию из минваты. Поверх минваты крепите панель со змеевиком. Края ваты подворачиваете так, чтобы змеевик не дотрагивался до стенок ящика. Нагревательная панель и панель из поликарбоната также должны иметь между собой расстояние и не прикасаться друг к другу.

Завершающая стадия состоит в обработке корпуса специальным раствором с водоотталкивающей способностью и покрывается эмалью (за исключением лицевой части).


Вот и все, солнечный коллектор своими руками готов. Для того чтобы его активировать, поставьте его на опорную конструкцию, развернув лицевой частью к солнцу таким образом, чтобы лучи падали на лицевую часть под максимально прямым углом. На крыше устанавливаете бак для накопления воды, он будет служить резервуаром. К верхней части бака проведите шланг, соединенный с верхней трубкой коллектора, к нижней части от нижней трубки. Подключив воду по такой схеме, вы обеспечите работу в режиме естественной циркуляции. Согласно законам физики, горячая вода будет подыматься кверху в направлении бака, а вытесняемая холодная будет попадать в коллектор для нагрева в змеевике. Не забудьте, что к баку необходимо присоединить шланг и вентиль для забора воды из бака, а также его наполнения новой.

СОЛНЕЧНЫЙ КОЛЛЕКТОР ИЗ ПОЛИКАРБОНАТА

Я уже давно задумал сделать на даче солнечный коллектор для нагрева воды в летнем душе. Идея эта появилась еще два года назад, с началом строительства бани, но только в прошлом году я приступил к ее практическому воплощению. Спросите: «Что я делал до этого»? А я искал какой же мне вариант реализации выбрать. Сейчас уже даже смешно вспоминать, какой у меня был первоначальный план.

Самый распространенный и наверное самый надежный вариант самодельных солнечных водонагревателей - это коллектор спаянный из медных трубок (схема чуть выше). Я тоже изначально думал делать именно такой. Но проблема в том, что он получается слишком уж дорогим и довольно тяжелым. У меня же стояла задача сделать максимально дешевую и легкую конструкцию.

Именно поэтому я остановился на варианте использования в качестве рабочей поверхности листового сотового поликарбоната. Развитие идеи использования пластиковых панелей с внутренней канальной структурой начиналось еще с мысли об использовании ПВХ-сайдинга, но потом на глаза попался поликарбонат - его не надо «набирать» из нескольких досочек. Моя уверенность в правильности выбранного материала для солнечного коллектора стала укрепляться, когда комментариях к описанию моих тестовых конструкций читатели начали предлагать использовать именно сотовый поликарбонат или полипропилен. А недавно я еще и в интернете наше описание нескольких похожих действующих солнечных нагревателей.

Итак, курс на изготовление пластикового солнечного коллектора выбран. Приступаем к реализации.

Первым делом я для себя решил, что мой коллектор будет собран без использования стекла. В качестве ветрозащиты я собираюсь использовать тот же материал, что и для рабочей поверхности, т.е. сотовый поликарбонат.

Это прозрачный материал, светопроницаемость достаточно хорошая, поэтому я не думаю, что он будет очень сильно снижать КПД конструкции по сравнению со стеклом. А вот плюсов у такой замены фронтальному стеклу я вижу массу. Благодаря тому, что поликарбонат фактически двухслойный, это будет равносильно двойному остеклению. Это поможет создать отличный парниковый эффект.

Второй плюс поликарбоната - прочность. Он с легкостью переносит крупный град. Даже если во время града фронтальное покрытие и пострадает, это разрушение ни как не скажется на работе системы в целом. И уж конечно, последствия не будут столь катастрофическими, как при разбитом стекле.

С фронтальным покрытием определились. Следующим важным элементом солнечного коллектора является задняя теплоизоляция. Я решил использовать для этого обычный листовой пенопласт. Причины такого выбора: легкость и дешевизна. Некоторые производители используют в качестве заднего утеплителя тот же сотовый поликарбонат или полипропилен. Решение конечно изящное, коллектор получается тоненький. Но лично мне кажется, что это будет чуть дороже. К тому же, у меня на даче уже был лист пенопласта подходящего размера - остался со времен утепления дома.

Следующий шаг - надо определиться с толщиной материала, который будет использоваться в качестве коллектора. В продаже есть листы от 4 до 25 мм. Некоторые советуют «брать больше», мотивируя это тем, что получится больше площадь сечения внутренних каналов, по которым будет циркулировать жидкость, что уменьшает сопротивление потоку. Но простой расчет для листа толщиной 4 мм дает нам суммарную площадь сечения каналов в районе 35 кв.см на погонный метр - это равносильно сечению трубы диаметром 6-7 см. Не знаю как вам, но мне этого сечения более чем достаточно. К тому же надо помнить вот еще что: чем больше будет толщина рабочего листа, тем больше будет объем внутренних каналов, т.е. тем больше туда поместится теплоносителя, а он будет иметь больший вес и этим весом будет деформировать нашу систему. В коллектор из листа поликарбоната толщиной 4 мм поместится около 3-4 литров на 1 кв.м, а если взять лист 10 мм, то теплоносителя в нем будет уже около 10 литров на 1 кв.м. А еще большой объем теплоносителя будет дольше прогреваться солнцем.

Короче, я решил использовать сотовый поликарбонат толщиной 4 мм. Было куплено два листа размером 210х100 см. Один - для рабочей поверхности, второй - для фронтальной защиты.

Кстати, еще на этапе обдумывания проекта я решил делать солнечный коллектор площадью около 2 кв.м. Для такой площади мне понадобилось два отрезка метровой длинны из сплошного 12-ти метрового листа, в которых продают сотовый поликарбонат. Ширина стандартного листа 210 см. - мне это как-раз подходит.

Было еще несколько вариантов. Например, можно было бы сделать два солнечных коллектора размером 1х1 метр, их будет проще перевозить. Я не стал этим заниматься из-за увеличения объема работ по сборке двух коллекторов вместо одного. К тому же у меня сборочная площадка и место будущей эксплуатации - одна и та же дача, не придется думать как перевезти здоровенную конструкцию.

Еще можно было бы сделать вертикально ориентированный коллектор размером 1х2 метра, но в этом случае мы бы уменьшили суммарное сечение внутренних каналов коллектора (в 2 раза), а также увеличили бы их длину (тоже в 2 раза), что примерно в 4 раза увеличило бы сопротивление потоку теплоносителя и снизило бы КПД системы, в сравнении с горизонтально ориентированным коллектором 2х1 м.

Для сборки и подключения коллектора я также купил:

Канализационные трубы ПВХ. Диаметр - 32 мм. Длина - 2 м.

Заглушки для этих труб

Полипропиленовые водопроводные уголки-фиттинги с металлической резьбой

Гибкие шланги с резьбовым соединением

Канализационные трубы были выбраны вместо водопроводных т.к. у них больше диаметр и тоньше стенки - проще будет резать трубу вдоль. Учитывая, что коллектор будет работать не под давлением, прочности такой трубы вполне хватит.

Штатные заглушки для канализационных труб будут использованы по прямому назначению - они закроют трубы с одной из сторон.

Полипропиленовые уголки с резьбой подбирались прямо в магазине так, чтобы их наружный диаметр максимально подходил ко внутреннему диаметру труб. Их надо будет просто посадить на герметик.

Можно было бы использовать уголок для канализационных труб, но тогда все равно пришлось бы думать как к нему надежно подсоединить шланг подключения коллектора. А с этими водопроводными уголками я «убиваю двух тараканов одним тапком» - и вывод сделаю и разборное соединение для подключения. Вы спросите: «Почему уголки? Почему не прямой вывод?» Ну так шланги-то от пассивного солнечного коллектора будут вверх идти к теплоаккумулятору, который должен располагаться выше коллектора. Уголки, чтобы потом шланги не изгибать.

Все остальные материалы будут докупаться по мере необходимости.

Начинаем сборку коллектора. Надо сделать продольный разрез в подающей и отводящей трубе. В этот разрез будет вставлен лист сотового поликарбоната. Вода будет поступать из нижней трубы в каналы этого листа, там она будет нагреваться солнцем и под действием термосифонного эффекта подниматься вверх. Нагретая вода отводится через верхнюю трубу.

Должно получиться примерно так:

Чтобы сделать продольный разрез в трубе я использовал обычную дрель с насадкой в виде дисковой пилы. Может также использоваться углошлифовальная машинка (болгарка), но у меня ее просто не было под рукой.

Сначала я пробовал сделать пропил, удерживая трубу руками, но это оказалось практически невозможно сделать. Труба скользит в руках и постоянно дергается из-за усилий, создаваемых пилой. Я помучился минут 5, пропилив за это время всего сантиметров 10-15. Пропил получился неровный, а учитывая, что мне суммарно надо пропилить 4 метра (две трубы по 2 метра), пришлось что-то придумывать.

Зажимать тонкостенные трубы из ПВХ в тиски - это плохая идея. Поэтому был придуман и на скорую руку собран простейший зажим из двух реек и обрывков веревки.

На этой фотке также видно низкое качество пропила, полученное при удержании трубы вручную.

С этой приспособой работа пошла гораздо быстрее. Две трубы удалось пропилить минут за 5.

Качество пропила тоже получилось вполне удовлетворительным. Видно, что он гораздо ровнее, по сравнению с пропилом, который делался когда трубу держали руками.

Длина пропила должна точно соответствовать ширине рабочей части будущего солнечного коллектора. В моем случае это чуть меньше 2 метров. Начало и конец трубы должны оставаться нетронутыми, чтобы в будущем их можно было использовать для подключения или заглушить.

Что надо делать дальше, думаю, всем понятно. Надо вставить лист сотового поликарбоната в этот пропил. Но тут есть одна сложность. Из-за внутреннего напряжения в пластике пропил в трубе просто «схлопнулся» почти по всей длине. Это видно на фотке. Вставить лист в такую щель оказалось сложно. Можно было бы ее расширить, чтобы даже после этого схлопывания у нас осталась ширина 4 мм, но я решил этого не делать. Расширяя пропил мы уменьшим диаметр трубы в средней части. А если оставить все как есть, то силы внутреннего напряжения в пластике будут компенсировать небольшое давление внутри коллектора. Также благодаря этому труба будет крепче держаться за лист.

Чтобы загнать лист поликарбоната в пропил в трубе я просто разрезал конец трубы канцелярским ножом:

А потом через этот разрез просто «натянул» трубу на лист.

Далее нужно выполнить небольшую подгонку. Основная задача в том, чтобы труба оставалась прямой, а сотовый поликарбонат не заходил в трубу слишком глубоко. Вот что у меня получилось (это не свет в конце тоннеля, это свет в конце трубы)

Еще на фотках видно, что листы сотового поликарбоната с обеих сторон затянуты защитной пленкой. Я решил ее не снимать, чтобы предохранить их от повреждения и загрязнения. Сниму перед самой покраской.

Теперь приступаем к одному из самых ответственных этапов сборки солнечного коллектора. Надо герметизировать стык рабочей поверхности с трубами. Умельцы с западных сайтов используют для этого разные силиконовые герметики, но у меня, если честно, есть большие сомнения в прочности такого соединения. Мой коллектор хоть и не будет испытывать на себе давление магистрального водопровода, но все-таки мне хотелось бы быть уверенным в том, что он не протечет. Тем более, что я уже экспериментировал с разными герметиками.

В итоге, для склеивания и герметизации солнечного коллектора я выбрал термоклей. Купил клеевой термопистолет, палочки клея для пластика и вперед.

Процесс герметизации оказался на удивление прост. Правда вот расход клеевых стержней мог бы быть и поменьше. Просто я не жалел клея. Проходил по стыкам в два захода. Сначала старался загнать расплавленный термоклей в стык, чтобы он заполнил собой все щели, а вторым заходом формировал ровный наружный шов, который будет держать нагрузку. На торцах клей тоже не экономил.

Поначалу у меня были сомнения - будет ли термоклей хорошо держать соединение ПВХ с поликарбонатом. Поэтому, чтобы проверить, я сначала приклеил небольшой кусочек поликарбоната к ПВХ-трубе. Скажу вам честно - потом еле отодрал. Теперь главное мое сомнение - не будет ли термоклей размягчаться при нагревании коллектора

Следующим этапом у меня будет покраска. Для лучшего поглощения солнечной энергии я решил покрасить коллектор обычной матовой краской из баллончика.

К сожалению, этот метод не идеален. Краска ложиться неровно, остаются плохо прокрашенные участки. К тому же, одного баллончика (правда неполного) мне на 2 кв.м поверхности не хватило. В последствии пришлось докупать еще один баллончик краски. Она оказалась на базе другого растворителя, поэтому при нанесении второго слоя для плотного закрашивания, она начала коробить старую краску. Короче, результат получился не очень хороший.

Поэтому, если вы хотите избежать лишних проблем с закрашиванием солнечного коллектора, лучше в качестве материала рабочей поверхности использовать не прозрачный поликарбонат, как у меня, а черный непрозрачный сотовый полипропилен. Его не придется красить, что значительно сократит расходы.

После полного окрашивания поглощающая панель коллектора приобрела такой вот вид:

Пятна на поверхности - это следы вспучившейся краски. Вспучивание произошло из-за того, что я заливал панель краской из разных баллончиков. Одна краска была на алкидной основе, а вторая - которая с алкидной краской «не дружит». Но для процесса нагревания это вспучивание значения не имеет, поэтому я не стал его исправлять.

После окрашивания, к концам труб были тем же термоклеем приделаны уголки с резьбой.

Уголки с резьбой позволяют легко подключать и отключать коллектор при помощи гибких армированных шлангов.

После этого я решил провести серию испытаний, чтобы проверить, как коллектор будет держать давление и температуру. Пока результаты меня не очень радуют, но обо всем по порядку.

Для испытаний я просто ставил коллектор вертикально и подавал в него воду из водопровода через нижнюю трубу. Прозрачный полипропилен с обратной стороны позволяет контролировать процесс заполнения. Как только коллектор полностью заполнялся и вода начинала выливаться через верхнюю трубу, подача воды в коллектор прекращалась. Минус такого способа в том, что он создает более высокое давление воды внизу коллектора и практически нет давления вверху.

Первое заполнение коллектора водой показало, что в клеевом стыке труб и поликарбоната есть несколько протечек. Причем протечки обнаружились вверху, где давление было низкое. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Второе подключение - ни где ничего не течет. Чтобы создать давление в районе верхней трубы я просто поднимал повыше конец отводящего гибкого шланга. Опять обнаружилась протечка. Отключаем панель, сливаем воду, сушим, устраняем точки протечки.

Третье подключение. Тут я набрался смелости и решил создать в панели повышенное давление, чтобы проверить, а вдруг он выдержит давление воды в водопроводе. Для создания давления я просто пальцем закрыл отводящую трубку. Воздух, оставшийся в коллекторе, должен был послужить амортизатором для плавного повышения давления. По мере нарастания давления, держать палец становилось все труднее, а потом клеевой шов у нижней трубы лопнул.

Выводы: слегка повышенное давление коллектор держит, но наглеть не стоит. Отключаем панель, сливаем воду, сушим, устраняем точки… нет уже не точки, а целые участки протечки.

Чтобы укрепить шов, я решил сделать его гораздо ТОЛЩЕ. Клеевым пистолетом в районе шва укладывалось большое количество термоклея, а потом все это оплавлялось и выравнивалось старым советским молотковым паяльником.

Для этой работы можно было бы использовать строительный фен, но у меня его просто не было.

После долгих мучений шов получился такой.

Некрасиво конечно, но главное чтобы держалось. Очередное испытание выявило лишь одну маленькую протечку, которая была быстро устранена. Настроение к этому моменту у меня уже было не самое радужное - оптимизм по поводу прочности швов несколько угас. Поэтому проверять панель на повышенное давление я не стал, чтобы не расстраиваться еще больше.

Не прибавило мне оптимизма также и испытание пустой панели на ярком солнце. Меньше чем за минуту коллектор нагрелся до такого состояния, что стало больно к нему прикасаться. Клей на швах на солнечной стороне также очень быстро размягчился. Понятное дело, что ни о какой прочности шва в такой ситуации речи быть не может. Если в рабочем режиме вода в коллекторе будет нагреваться до такой же высокой температуры или будет нарушена циркуляция, скорей всего швы не выдержат. Тут, видимо, надо брать какой-то более тугоплавкий термоклей.

Ну да ладно. Я на все эти неудачи махнул рукой - все таки это эксперимент. Решил довести сборку солнечного коллектора до конца. А если не получится, разберу и буду делать коллектор по другой схеме.

Под панель коллектора положил лист обычного пенопласта толщиной 5 см. А сверху все это накрыл еще одним листом прозрачного поликарбоната. Поликарбонат был немного шире, поэтому края я просто загнул и впоследствии прикрутил к пенопласту шурупами

Для изготовления рамы я использовал металлический профиль для гипсокартона. Профиль выбирал исходя из предполагаемых размеров «сандвича» солнечного коллектора. У меня профиль то ли 70х30, то ли 70х40, но как оказалось, можно было брать чуть больше, например 70х70.

В профиле самым бесцеремонным образом были вырезаны отверстия для вывода наружу точек подключения солнечного коллектора.

Немного неаккуратно, но те ножницы по металлу, которые оказались у меня под рукой, иначе сделать просто не позволяли

Сборка рамки производилась на шурупы, которые предназначены для скрепления таких металлических профилей. В результате получилось такое вот изделие.

Как видно на фото, мне пришлось дополнительно «стянуть» горизонтальные участки рамки между собой. Без этой стяжки они не хотели держать форму. Все таки для рамы был выбран слишком тонкий металлический профиль большой длины.

А вот как коллектор выглядит с обратной стороны.

На двух последних фотографиях коллектор показан на «испытательном стенде» Он был полностью заполнен водой и простоял так около часа. Протечек ни где не обнаружилось. Это обнадеживает.

Посмотрим как он покажет себя после подключения в реальных рабочих условиях.

Солнечный коллектор из поликарбоната своими руками как собрать и изготовить


Солнечный коллектор из поликарбоната своими руками как собрать и изготовить Солнечный коллектор своими руками из 14-ти метров металлопластиковой трубы стоимостью 31 руб/метр

Строим солнечный коллектор для теплицы самостоятельно

Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней обеспечивалась стабильная температура длительное время. Это достигается из-за использования специального оборудования и теплоизоляционных материалов, которые обеспечивают обогрев теплицы путем использования солнечной энергии.

Применение солнечных коллекторов помогает обогреть теплицу даже при плохих погодных условиях, когда температура окружающей среды составляет до -25°С.

Преимущества солнечных коллекторов

В виде специального варианта используется отопление теплицы солнечным коллектором. Для получения эффекта от работы коллекторов, их производят из специальных теплоизоляционных материалов. Создается надежная герметизация всех элементов системы, чтобы получить полный вакуум.

Если применять подобные обогревательные элементы, то можно произвести обогрев теплицы даже при плохих погодных условиях, когда параметры температуры окружающей среды составляют до -25°С. В подобном диапазоне температур можно проводить выращивание сельскохозяйственных культур в течение круглого года и получать высокие урожаи. Но температура снижается существенно, а также выступает за территорию рабочего диапазона.

Для решения данного вопроса применяют обогревательный тэн или тепловой насос. В итоге получается целый скомбинированный вид отопительный системы в теплице, которая почти не имеет конкурентов в этой области применения.

Направление солнечных коллекторов относится сейчас к перспективному направлению, а их стоимость постоянно снижается. Отличием солнечной энергии, которую потребляет коллектор, является экологическая чистота и бесплатность. Система способна обеспечить обогрев теплицы из поликарбоната и любой другой.

В системе отопления теплицы основной теплоноситель – это вода. Некоторые системы могут применять воздух, но получается значительно меньшая эффективность. В сравнении с водой, воздух отличается меньшей теплоемкостью.

Как своими руками создать такую теплицу

Коллектор можно сделать своими руками. Данная конструкция отличается простотой, а в виде элементов самодельного коллектора применяется медный змеевик от старых холодильников или обычные полтора литровые пластиковые бутылки.

Благодаря использованию солнечного коллектора можно значительно сэкономить материальные средства.

Можно эффективно использовать параметры самой бутылки в подобных коллекторах. Ее способность по сбору отраженных солнечных лучей позволяет создавать дополнительный теплоизоляционный слой без осуществления поворота за солнцем. Воздух, циркулирующий в бутылке, становится дополнительным изолятором, который разогревается лучами солнца. Именно поэтому в конструкции применяются бутылки, которые позволяют увеличить площадь обогреваемой поверхности трубки с теплоносителем.

Создание основной части

При изготовлении коллектора применяются такие материалы:

  1. Пластиковые бутылки.
  2. Железная бочка.
  3. Алюминиевые, медные или резиновые трубки.
  4. Деревянный брус.
  5. Шланг.
  6. Фольга.
  7. Скотч.
  8. Змеевик от старого холодильника.

Для теплоносителя подойдут трубки из разнообразных материалов: алюминий, медь, резина. Металлический вариант коллектора менее практичен из-за того, что поддается коррозии. Применение металлических трубок делает увеличение стоимости самой конструкции. Пластик использовать не рекомендуется из-за плохой теплопроводимости, подобная установка будет неэффективной.

Сборка самодельного солнечного коллектора не составит особого труда, но значительно сэкономит ваши деньги.

Из практики известно, что лучше применять при самостоятельном изготовлении коллектора только резиновый шланг для транспортировки теплоносителя. Важно, чтобы шланг имел черный цвет. В иных случаях его окрашивают обычной черной эмалью.

Приоритетней использовать матовую краску, чтобы отсутствовал эффект отражения лучей. Можно в теплоносителе использовать запчасти для старых холодильников – змеевики, по которым протекает фреон. После его демонтажа с холодильника, деталь продувается, очищается от мусора и ржавчины.

Сборка осветительного элемента

После проведения сборки, данный коллектор будет иметь вид последовательно соединенных пластиковых бутылок. Желательно использовать чистые, прозрачные и одинаковые экземпляры, а дно и горлышко требуется обрезать. С помощью бутылок составляют сплошную трубу.

Коллектор оборудуется отражателями, представляющие собой квадратики из обычной фольги.

Двухсторонний скотч используется для приклеивания фольги к нежней части бутылки. Другая половина бутылок не должна закрываться.

Для создания каркаса, где располагается коллектор, можно применить обычный брус 5 см. Используют произвольную форму каркаса, которая будет учитывать главное требование, заключающееся в устойчивости. Хомутами крепится труба с теплоносителем.

Простой аккумулятор создается из обычной железной бочки, которую нужно хорошо утеплить и герметически закупорить.

Роль конструкции теплицы

Представленный вариант по созданию самодельного коллектора не является единственным. Существуют другие разные конструкции солнечных коллекторов, которые отличаются своей стоимостью и эффективностью в работе. Любые солнечные коллекторы, которые изготавливаются самостоятельно, имеют более дешевую стоимость, чем заводские варианты.

Если профессионально подходить к выращиванию разных сельскохозяйственный культур в теплицах, то сконструированный своими руками солнечный коллектор не будет способен обеспечить необходимого температурного режима. В этом случае приобретается профессиональный коллектор. В продаже есть различные варианты по исполнению. Они имеют довольно высокую стоимость, но эффективность оправдывает потраченные средства.

Опыт показывает, что в виде изолятора теплицы можно использовать экструдированный пенополистирол. Достоинства его применения заключены в прочности, он не боится влаги и не деформируется, а при этом обеспечивает хорошую сохранность тепла.

Солнечный коллектор своими руками

Большую роль играет конструкция теплицы. Из-за работы с несимметричными конструкциями, эффективность от обогрева теплицы увеличивается на 25% в сравнении с обычными конструкциями.

Строим солнечный коллектор для теплицы самостоятельно, ДачаСадовода


Когда солнце прячется, обычная теплица остывает. Температура снижается в конструкции резко. Солнечные теплицы конструируют таким способом, чтобы в ней

Солнечный коллектор своими руками из поликарбоната

Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и наиболее качественный вариант – схему солнечного коллектора из поликарбоната. Рассмотрим подробно все нюансы данного агрегата.

Солнечный коллектор состоит он из листов ячеистого поликарбоната или же полипропилена. К торцам этих листов и крепится сам коллектор. Монтируют такие листы в специальный жестяной крытый короб. В качестве крышки применяется также лист из того же материала (поликарбоната).

Также можно солнечный коллектор из поликарбоната накрыть и стеклянной крышкой, но стоит учитывать свойства поликарбоната, который, при вполне достаточной светопроницаемости, способен создать достаточный парниковый эффект, равносильный двойному остеклению. Ведь поликарбонат фактически состоит из двух слоев. К тому же, данный материал намного более прочен, чем стекло, позволяя спокойно переносить удары крупных градин. Это поможет сохранить систему в полностью рабочем состоянии даже в том случае, если наружное покрытие подвергнется деформации в процессе града.

Также немаловажно обеспечение теплоизоляции задней стенки коллектора. Оптимальным материалом для этого есть листы пенополистирола, поскольку данный материал не только достаточно легок, но и обладает весьма приемлемой ценой. При использовании полипропиленового утеплителя стоимость конструкции возрастет.

Для коллектора применяют ячеистый поликарбонат, толщины 4-25 мм. Все зависит от количества членов семьи. К примеру, для 4-х человек достаточно будет и поликарбоната 4-8 мм в толщину. Потребуется пара листов разного размера. Первый берется таких же размеров, что и короб. Второй же лист поликарбоната для солнечного коллектора должен входить внутрь короба, имея при этом зазоры необходимой ширины, поэтому он несколько меньше.

Материалы, необходимые для монтажа коллектора:

  • Водопроводная поливинилхлоридная труба, диаметром 3,2 см и длиной 1,5 метра - 2 штуки;
  • Заглушки для труб указанного выше типа – 2 шт;
  • Фиттинговые уголки из полипропилена с металлической резьбой - 2 штуки;
  • Шланги с резьбовым соединением .

Начинаем сборку коллектора из поликарбоната

Вначале, в обоих видах труб проделываются продольные разрезы, в которые впоследствии вставляется поликарбонатный ячеистый лист. Подаваемая снизу вода поступает в желобки листа, где прогревается и за счет эффекта термического сифона поднимается к верхней трубе, откуда отводится к накопителю.

Концы трубы остаются нетронутыми, чтобы в дальнейшем была возможность подключить или заглушить их. Разрез в трубе берется тех же размеров, что и ширина коллекторной части.

При вставке поликарбонатного листа в пропил есть небольшой нюанс. За счет внутреннего напряжения пластика, пропил сходится. Поэтому вставку необходимо производить осторожно, следя за тем, чтобы лист не вошел в трубу, слишком глубоко - это будет мешать нормальной циркуляции воды. Расширять пропил не стоит, поскольку за счет его напряжения труба крепче держится за поликарбонатный лист и происходит компенсация внутрилистового давления. Небольшая подгонка, конечно же, допустима.

Для улучшения сцепления поверхностей с герметиком, края листа поликарбоната обрабатывается наждачной бумагой перед вставкой в трубу. Также нужно обезжирить место будущего стыка.

Следующим этапом производится герметизация стыков трубы с рабочей поверхностью коллектора. Этап этот достаточно важен, поэтому на герметике экономить не стоит. Простой силиконовый не достаточно хорош.

Для большего уровня поглощения солнечного тепла, поверхность солнечного коллектора из поликарбоната необходимо покрасить. Кстати, для обустройства рабочей поверхности лучше применять матовый черный полипропилен. Это поможет лишний раз не отвлекаться на возможные сложности в работах по окрашиванию, да и заодно сэкономит Ваши средства.

По завершении покраски, приходит черед уголков с металлической резьбой. Они закрепляются на концах труб при помощи термоклея. Данное дополнение, как и гибкие шланги с армировкой, значительно облегчит процесс подключения и отключения коллектора.

Устанавливаем солнечный коллектор в короб

В первую очередь производится монтаж листа пенополистирола на заднюю стенку каркаса, для чего чаще всего применяется монтажная пена, или же банально – клей. Дальше – монтаж коллектора. Применяя хомуты из металла, или же пластика, закрепляем коллектор как можно плотнее к пенопласту, производя крепление с максимальным качеством. Финальным этапом идет монтаж поликарбоната с лицевой стороны. Производится крепление с применением саморезов.

Стандартная схема работы системы с солнечным коллектором

На чердак строения устанавливается объемный (160 литров) накопительный бак, утепленный минеральной ватой. Он соединяется с системой подачи горячей воды (отбор горячей воды). Подача горячей воды из бака производится без дополнительного давления, самотеком, для подачи же холодной устанавливается насос, подающий воду из колодца/скважины.

Монтируют солнечный коллектор из поликарбоната таким образом, чтобы верх коллектора не был выше накопительного бака, что позволяет воде циркулировать естественным путем. Горячая будет подниматься в бак, заменяясь холодной. Для этого также трубку, по которой подается горячая вода, крепят чуть выше середины накопителя, что помогает накапливать горячую воду вверху бака.

Еще практикуется установка двух или нескольких установок с солнечными коллекторами из поликарбоната по разным сторонам крыши, что помогает увеличить количество горячей воды, поступающей в бак, а также стабильность ее нагревания.

Солнечный коллектор из поликарбоната, Строй Быт


Солнечный коллектор своими руками из поликарбоната Солнечный коллектор - агрегат, производящий нагрев воды применением солнечной энергии. Для рассмотрения возьмем самый оптимальный и
Понравилась статья? Поделитесь ей
Наверх