Определить разность потенциалов между обкладками конденсатора. Конденсаторы. Электрическая емкость плоского конденсатора

Одним их важнейших параметров, при помощи которого характеризуют конденсатор, является его электроёмкость (C). Физическая величина C, равная:

называется емкостью конденсатора. Где q - величина заряда одной из обкладок конденсатора, а - разность потенциалов между его обкладками. Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Для конденсаторов с одинаковым устройством и при равных зарядах на его обкладках разность потенциалов воздушного конденсатора будет в раз меньше, чем разность потенциалов между обкладками конденсатора, пространство которого между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Значит емкость конденсатора с диэлектриком (C) в раз больше, чем электроемкость воздушного конденсатора ():

где - диэлектрическая проницаемость диэлектрика.

Единицей емкости конденсатора считают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) является фарад (Ф).

Электроемкость плоского конденсатора

Поле между обкладками плоского конденсатора в большинстве случаев считают однородным. Однородность нарушается только около краев. При расчете емкости плоского конденсатора данными краевыми эффектами обычно пренебрегают. Это возможно, если расстояние между пластинами мало в сравнении с их линейными размерами. В таком случае емкость плоского конденсатора вычисляют как:

где - электрическая постоянная; S - площадь каждой (или наименьшей) пластины; d - расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Электрическая емкость цилиндрического конденсатора

Конструкция цилиндрического конденсатора включает две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость такого конденсатора находят как:

где l - высота цилиндров; - радиус внешней обкладки; - радиус внутренней обкладки.

Емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где - радиусы обкладок конденсатора.

Примеры решения задач

ПРИМЕР 1

Задание Пластины плоского воздушного конденсатора несут заряд, который равномерно распределен с поверхностной плотностью . При этом расстояние между его обкладками, равно . На какую величину изменится разность потенциалов на обкладках этого конденсатора, если его пластины раздвинуть до расстояния ?
Решение Сделаем рисунок.


В задаче при изменении расстояния между пластинами конденсатора заряд на его обкладках не изменяется, изменяются емкость и разность потенциалов на обкладках. Емкость плоского воздушного конденсатора равна:

где . Емкость этого же конденсатора можно определить как:

где U - разность потенциалов на обкладках конденсатора. Для конденсатора в первом случае имеем:

Для того же конденсатора, но после того как пластины раздвинули, имеем:

Используя формулу (1.3) и применяя соотношение:

выразим разность потенциалов

Следовательно, для конденсатора во втором состоянии получим:

Найдем изменение разности потенциалов:

Ответ

Электрическая емкость

При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q .

Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

Если потенциал поверхности шара

(5.4.3)
(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Таким образом, при параллельном соединении конденсаторов суммарная емкость

Общая емкость больше самой большой емкости, входящей в батарею.

2) Последовательное соединение конденсаторов (рис. 5.10):

Общим является заряд q.

Или , отсюда

(5.4.6)

Сравните с последовательным соединением R :

Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд , то

. (5.4.7)

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε 0:

(5.4.8)

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Большое число конденсаторов, которые применяют в технике, приближены по типу к плоскому конденсатору. Это конденсатор, который представляет собой две параллельные проводящие плоскости (обкладки), которые разделяет небольшой промежуток, заполненный диэлектриком. На обкладках сосредоточены равные по модулю и противоположные по знаку заряды.

Электрическая емкость плоского конденсатора

Электрическая емкость плоского конденсатора очень просто выражается через параметры его частей. Изменяя площадь пластин конденсатора и расстояние между ними легко убедиться, что электрическая емкость плоского конденсатора прямо пропорциональна площади его пластин (S) и обратно пропорциональна расстоянию между ними (d):

Формулу для расчета емкости плоского конденсатора просто получить при помощи теоретических расчетов.

Положим, что расстояние между пластинами конденсатора много меньше, чем их линейные размеры. Тогда краевыми эффектами можно пренебречь, и электрическое поле между обкладками считать однородным. Поле (E), которое создают две бесконечные плоскости, несущие одинаковый по модулю и противоположный по знаку заряд, разделенные диэлектриком с диэлектрической проницаемостью , можно определить при помощи формулы:

где — плотность распределения заряда по поверхности пластины. Разность потенциалов между рассматриваемыми обкладками конденсатора, находящимися на расстоянии d будет равна:

Подставим правую часть выражения (3) вместо разности потенциалов в (1) учитывая, что , имеем:

Энергия поля плоского конденсатора и сила взаимодействия его пластин

Формула энергии поля плоского конденсатора записывается как:

где - объем конденсатора; E - напряженность поля конденсатора. Формула (5) связывает энергию конденсатора с зарядом на его обкладках и напряженностью поля.

Механическую (пондемоторную) силу, с которой пластины плоского конденсатора взаимодействуют между собой можно найти, если использовать формулу:

В выражении (6) минус показывает, что пластины конденсатора притягиваются друг к другу.

Примеры решения задач

ПРИМЕР 1

Задание Чему равно расстояние между пластинами плоского конденсатора, если при разности потенциалов В, заряд на пластине конденсатора равен Кл? Площадь пластин , диэлектриком в нем является слюда ().
Решение Емкость конденсатора вычисляется при помощи формулы:

Из этого выражения получим расстояние между пластинами:

Емкость любого конденсатора определяет формула:

где U - разность потенциалов между обкладками конденсатора. Подставим правую часть выражения (1.3) вместо емкости в формулу (1.2), имеем:

Вычислим расстояние между обкладками ():

Ответ м

ПРИМЕР 2

Задание Разность потенциалов между пластинами плоского воздушного конденсатора равна В. Площадь пластин равна , расстояние между ними м. Какова энергия конденсатора и чему она будет равна, если пластины раздвинуть до расстояния м. Учтите, что источник напряжения при раздвижении пластин не отключают.
Решение Сделаем рисунок.


Энергию электрического поля конденсатора можно найти при помощи выражения:

Так как конденсатор плоский, то его электрическую емкость можно вычислить как:

7.6. Конденсаторы

7.6.3. Изменение электроемкости конденсатора и батареи конденсаторов

Емкость конденсатора можно изменить, увеличивая или уменьшая расстояние между его обкладками, заменяя диэлектрик в пространстве между ними и т.п. При этом определяющим оказывается, отключен или подключен конденсатор к источнику напряжения.

Если конденсатор (или батарея конденсаторов):

  • подключен к источнику напряжения, то разность потенциалов (напряжение) между обкладками конденсатора сохраняется неизменной и равной напряжению на полюсах источника:

U = const;

  • отключен от источника напряжения, то заряд на обкладках конденсатора остается неизменным:

Q = const.

При соединении между собой одноименных обкладок двух заряженных конденсаторов имеет место их параллельное соединение .

U = Q общ C общ,

где Q общ - заряд батареи конденсаторов; C общ - электроемкость батареи;

C общ = C 1 + C 2 ,

где С 1 - электроемкость первого конденсатора; С 2 - электроемкость второго конденсатора;

  • общий заряд

Q общ = Q 1 + Q 2 ,

При соединении между собой разноименных обкладок двух заряженных конденсаторов имеет место (как и в случае соединения одноименных обкладок) их параллельное соединение .

Параметры такой батареи конденсаторов вычисляются следующим образом:

  • напряжение на батарее конденсаторов

U = Q общ C общ,

где Q общ - заряд батареи конденсаторов; C общ - емкость батареи;

  • электроемкость батареи конденсаторов

C общ = C 1 + C 2 ,

где C 1 - электроемкость первого конденсатора; C 2 - электроемкость второго конденсатора;

  • общий заряд

Q общ = |Q 1 − Q 2 |,

где Q 1 - начальный заряд первого конденсатора, Q 1 = C 1 U 1 ; U 1 - напряжение (разность потенциалов) между обкладками первого конденсатора до соединения; Q 2 - начальный заряд второго конденсатора, Q 2 = C 2 U 2 ; U 2 - напряжение (разность потенциалов) между обкладками второго конденсатора до соединения.

Пример 17. Два конденсатора одинаковой электроемкости заряжены до разности потенциалов 120 и 240 В соответственно, а затем соединены одноименно заряженными пластинами. Какова станет разность потенциалов между обкладками конденсаторов после указанного соединения?

Решение . До соединения одноименных пластин конденсаторов каждый из них обладал зарядом:

  • первый конденсатор -
  • второй конденсатор -

При соединении одноименных обкладок получим параллельное соединение конденсаторов. Разность потенциалов между обкладками батареи конденсаторов определяется формулой

U = Q общ C общ,

Общий заряд батареи двух конденсаторов, полученной соединением их одноименных обкладок, определяется суммой зарядов каждого из них:

Q общ = Q 1 + Q 2 ,

U = Q общ C общ = Q 1 + Q 2 2 C = C U 1 + C U 2 2 C = U 1 + U 2 2 .

Вычислим:

U = 120 + 240 2 = 180 В.

Разность потенциалов между обкладками конденсаторов после указанного соединения составит 180 В.

Пример 18. Два одинаковых плоских конденсатора заряжены до разности потенциалов 200 и 300 В. Определить разность потенциалов между обкладками конденсаторов после соединения их разноименных обкладок.

Решение . До соединения разноименных пластин конденсаторов каждый из них обладал зарядом:

  • первый конденсатор -

Q 1 = C 1 U 1 = CU 1 ,

где C 1 - электроемкость первого конденсатора, C 1 = C ; U 1 - разность потенциалов между обкладками первого конденсатора;

  • второй конденсатор -

Q 2 = C 2 U 2 = CU 2 ,

где C 2 - электроемкость второго конденсатора, C 2 = C ; U 2 - разность потенциалов между обкладками второго конденсатора.

При соединении разноименных обкладок получаем параллельное соединение конденсаторов. Разность потенциалов между обкладками батареи конденсаторов определяется формулой

U = Q общ C общ,

где Q общ - общий заряд батареи; C общ - общая электроемкость батареи.

Общий заряд батареи двух конденсаторов, полученной соединением их разноименных обкладок, определяется модулем разности зарядов каждого из них:

Q общ = |Q 1 − Q 2 |,

а общая электроемкость батареи двух одинаковых конденсаторов, соединенных параллельно, -

C общ = C 1 + C 2 = 2C .

Следовательно, разность потенциалов между обкладками батареи определяется выражением

U = Q общ C общ = | Q 1 − Q 2 | 2 C = | C U 1 − C U 2 | 2 C = | U 1 − U 2 | 2 .

Вычислим:

U = | 200 − 300 | 2 = 50 В.

Разность потенциалов между обкладками конденсаторов после указанного соединения составит 50 В.

Пример 19. Плоский воздушный конденсатор заряжен до 180 В и отключен от источника напряжения. В пространство между его обкладками, параллельно им, вводят незаряженную металлическую пластину, толщина которой в 3 раза меньше расстояния между обкладками. Считая, что металлическая пластина расположена симметрично относительно обкладок конденсатора, определить разность потенциалов, которая установится между ними.

Решение . При помещении металлической пластины в плоский конденсатор так, как показано на рисунке, свободные электроны в металле перераспределяются:

  • плоскость, обращенная к положительно заряженной обкладке конденсатора, получает избыток электронов и заряжается отрицательным зарядом q 1 = −q ;
  • плоскость, обращенная к отрицательно заряженной обкладке конденсатора, имеет недостаток электронов и заряжается положительным зарядом q 2 = +q .

В результате перераспределения заряда пластина остается нейтральной:

Q = q 1 + q 2 = −q + q = 0.

Перераспределение заряда в металлической пластине приводит к образованию батареи двух конденсаторов:

  • положительно заряженная обкладка конденсатора и отрицательно заряженная плоскость металлической пластины имеют одинаковые по модулю заряды противоположного знака; они могут рассматриваться как конденсатор с электроемкостью

C 1 = ε 0 S d 1 ,

где ε 0 - электрическая постоянная, ε 0 = 8,85 ⋅ 10 −12 Кл 2 /(Н ⋅ м 2); S - площадь обкладки конденсатора; d 1 - расстояние между положительно заряженной обкладкой конденсатора и отрицательно заряженной плоскостью металлической пластины;

  • отрицательно заряженная обкладка конденсатора и положительно заряженная плоскость металлической пластины также имеют одинаковые по модулю заряды противоположного знака; они могут рассматриваться как конденсатор с электроемкостью

C 2 = ε 0 S d 2 ,

где d 2 - расстояние между отрицательно заряженной обкладкой конденсатора и положительно заряженной плоскостью металлической пластины.

Оба конденсатора имеют одинаковые заряды и образуют последовательное соединение. Электроемкость батареи двух конденсаторов при последовательном соединении определяется формулой

1 C общ = 1 C 1 + 1 C 2 , или C общ = C 1 C 2 C 1 + C 2 .

При симметричном расположении пластины в пространстве между обкладками конденсатора (d 1 = d 2 = d ) электроемкости конденсаторов одинаковы:

C 1 = C 2 = ε 0 S d ,

общая электроемкость батареи задается выражением

C общ = C 1 C 2 C 1 + C 2 = C 2 = ε 0 S 2 d ,

где d = (d 0 − a )/2; d 0 - расстояние между обкладками конденсатора до введения пластины; a - толщина металлической пластины.

Разность потенциалов между обкладками батареи

U = Q общ C общ = 2 d q ε 0 S = q (d 0 − a) ε 0 S ,

где Q общ - заряд батареи последовательно соединенных конденсаторов, Q общ = q .

Первоначальная разность потенциалов определяется формулой

U 0 = Q 0 C 0 = Q 0 d 0 ε 0 S ,

где Q 0 - заряд конденсатора до введения пластины, Q 0 = q (конденсатор отключен от источника напряжения); C 0 - электроемкость конденсатора до введения пластины.

Отношение разности потенциалов до и после введения металлической пластины определяется выражением

U U 0 = d 0 − a d 0 .

Отсюда найдем искомую разность потенциалов

U = U 0 d 0 − a d 0 .

С учетом d 0 = 3a выражение принимает вид:

U = U 0 3 a − a 3 a = 2 3 U 0 .

Рассчитаем:

U = 2 3 ⋅ 180 = 120 В.

В результате введения в конденсатор металлической пластины разность потенциалов между его обкладками уменьшилась и составила 120 В.

Пример 20. Плоский воздушный конденсатор заряжен до 240 В и отключен от источника напряжения. Его вертикально погружают в некоторую жидкость с диэлектрической проницаемостью 2,00 на одну треть объема. Найти разность потенциалов, которая установится между обкладками конденсатора.

Решение . При частичном погружении плоского воздушного конденсатора в жидкий диэлектрик, как показано на рисунке, свободные электроны на его обкладках перераспределяются таким образом, что:

  • часть обкладок конденсатора, погруженная в диэлектрик, имеет заряд q 1 ;
  • часть обкладок конденсатора, оставшаяся в воздухе, имеет заряд q 2 .

В результате перераспределения заряда по площади обкладок конденсатора на его обкладках устанавливается заряд:

Q общ = q 1 + q 2 .

Площадь обкладок конденсатора при частичном погружении его в жидкий диэлектрик разделяется на две части:

  • часть, погруженная в диэлектрик, имеет площадь S 1 ; соответствующая часть конденсатора может рассматриваться как отдельный конденсатор с электроемкостью

C 1 = ε 0 ε S 1 d ,

где ε 0 - электрическая постоянная, ε 0 = 8,85 ⋅ 10 −12 Кл 2 /(Н ⋅ м 2); ε - диэлектрическая проницаемость конденсатора; d - расстояние между обкладками конденсатора;

  • часть, оставшаяся в воздухе, имеет площадь S 2 ; соответствующая часть конденсатора может рассматриваться как отдельный конденсатор с электроемкостью

C 2 = ε 0 S 2 d .

Оба конденсатора обладают одинаковой разностью потенциалов между обкладками и образуют параллельное соединение. Электроемкость батареи двух конденсаторов при параллельном соединении определяется формулой

C общ = C 1 + C 2 = ε 0 ε S 1 d + ε 0 S 2 d = ε 0 d (ε S 1 + S 2) ,

а заряд на обкладках батареи -

Q общ = C общ U = ε 0 d (ε S 1 + S 2) U ,

где U - разность потенциалов между обкладками батареи.

Электроемкость конденсатора до погружения его в диэлектрик определяется выражением

C 0 = ε 0 S 0 d ,

а заряд на его обкладках -

Q 0 = C 0 U 0 = ε 0 S 0 d U 0 ,

где U 0 - разность потенциалов между обкладками конденсатора до введения пластины; S 0 - площадь обкладки.

Конденсатор отключен от источника напряжения, поэтому его заряд после частичного погружения в диэлектрик не изменяется:

Q 0 = Q общ,

или, в явном виде,

ε 0 S 0 d U 0 = ε 0 d (ε S 1 + S 2) U .

После упрощения имеем:

S 0 U 0 = (εS 1 + S 2)U .

Отсюда следует, что искомая разность потенциалов определяется выражением

U = U 0 S 0 ε S 1 + S 2 .

С учетом того, что в диэлектрик погружена часть пластин конденсатора, т.е.

S 1 = ηS 0 , S 2 = S 0 − S 1 = S 0 − ηS 0 = S 0 (1 − η), η = 1 3 ,

U = U 0 S 0 ε η S 0 + S 0 (1 − η) = U 0 ε η + 1 − η .

Отсюда найдем искомую разность потенциалов:

U = 240 2,00 ⋅ 1 3 + 1 − 1 3 = 180 В.

Физическая величина, равная работе, которую совершат силы поля, перемещая заряд из одной точки поля в другую, называется напряжением между этими точками поля.

Рассмотрим однородное электростатическое поле (такое поле существует между пластинами плоского заряженного конденсатора вдали от его краев):

Во время перемещения заряда поле совершает работу:

  1. Проводник во внешнем электрическом поле (сто происходит, почему индукцируется)

Индукция электростатическая,

наведение в проводниках или диэлектриках электрических зарядов в постоянном электрическом поле.

В проводниках подвижные заряженные частицы - электроны - перемещаются под действиемвнешнего электрическогополя . Перемещение происходит до тех пор, пока заряд не перераспределится так, что созданное им электрическоеполе внутрипроводника полностью скомпенсируетвнешнее поле и суммарное электрическоеполе внутрипроводника станет равным нулю. (Если бы этого не произошло, то внутри проводника, помещенного в постоянное электрическое поле, неограниченно долго существовал бы электрический ток, что противоречило бы закону сохранения энергии.) В результате на отдельных участках поверхности проводника (в целом нейтрального) образуются равные по величине наведённые (индуцированные) заряды противоположного знака.

В диэлектриках, помещенных в постоянное электрическое поле, происходит поляризация, которая состоит либо в небольшом смещении положительных и отрицательных зарядов внутри молекул в противоположные стороны, что приводит к образованию электрических диполей (с электрическим моментом, пропорциональным внешнему полю), либо в частичной ориентации молекул, обладающих электрическим моментом, в направлении поля. В том и другом случае электрический дипольный момент единицы объёма диэлектрика становится отличным от нуля. На поверхности диэлектрика появляются связанные заряды. Если поляризация неоднородная, то связанные заряды появляются и внутри диэлектрика. Поляризованный диэлектрик порождает электростатическое поле, добавляющееся к внешнему полю. (См.Диэлектрики .)

  1. Электроемкость, конденсатор

Электроемкость – количественная мера способности проводника удерживать заряд.

Простейшие способы разделение разноименных электрических зарядов – электризация и электростатическая индукция – позволяют получить на поверхности тел не большое количество свободных электрических зарядов. Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы .

Конденсатор – это система из двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные слоем диэлектрика, образуют плоский конденсатор.

Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность электрического поля между пластинами будет в два раза больше, чем напряженность поля у одной пластины. Вне пластин напряженность электрического поля равна нулю, т. к. равные заряды разного знака на двух пластинах создают вне пластин электрические поля, напряженности которых равны по модулю, но противоположны по направлению.

Электроемкостью конденсатора называется физическая величина, определяемая отношением заряда одной из пластин к напряжению между обкладками конденсатора:

При неизменном положении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.

За единицу электроемкости в системе СИ принимают Фарад. 1 Ф – электроемкость такого конденсатора, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл.

Электроемкость плоского конденсатора можно вычислить по формуле:

, где

S – площадь обкладок конденсатора

d – расстояние между обкладками

–диэлектрическая проницаемость диэлектрика

Электроемкость шара можно вычислить по формуле:

Энергия заряженного конденсатора.

Если внутри конденсатора напряженность поля E, тогда напряженность поля, созданного зарядом одной из пластин E/2. В однородном поле одной пластины находится заряд, распределенный по поверхности другой пластины. Согласно формуле для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

Используя формулу электроемкости конденсатора
:

Понравилась статья? Поделитесь ей
Наверх